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Abstract

Recently, researchers have been interested in studying the semidefinite programming

(SDP) relaxation model, where the matrix is both positive semidefinite and entry-wise

nonnegative, for quadratically constrained quadratic programming (QCQP). Comparing

to the basic SDP relaxation, this doubly-positive SDP model possesses additional O(n2)

constraints, which makes the SDP solution complexity substantially higher than that for

the basic model with O(n) constraints. In this paper, we prove that the doubly-positive

SDP model is equivalent to the basic one with a set of valid quadratic cuts. When QCQP

is symmetric and homogeneous (which represents many classical combinatorial and non-

convex optimization problems), the doubly-positive SDP model is equivalent to the basic

SDP even without any valid cut. On the other hand, the doubly-positive SDP model could

help to tighten the bound up to 36%, but no more. Finally, we manage to extend some of

the previous results to quartic models.
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1. Introduction

Consider the quadratically constrained quadratic programming problem

Maximize xTQ0x+ cT0 x

Subject to xTQix+ cTi x = bi, i = 1, . . . ,m,

−e ≤ x ≤ e,

(1.1)

where symmetric matrix Qi ∈ ℜn×n and vector ci ∈ ℜn, i = 0, 1, · · · ,m, and e ∈ ℜn is the

vector of all ones. Note that any other lower and upper bounds on decision variables, l ≤ x ≤ u,

can be transformed to −e ≤ x ≤ e through scaling and linear translation. Also, the results

developed in this paper are easily extendable to quadratic inequality constraints. We assume
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that the QP problem is known to be feasible, so that any of its relaxation models would be also

feasible.

The classical and basic semidefinite programming relaxation for problem (1.1) is

Maximize Q0 ·X + cT0 x

Subject to Qi ·X + cTi x = bi, i = 1, · · · ,m,

Xjj ≤ 1, j = 1, · · · , n,
[

X x

xT 1

]

� 0.

(1.2)

If the SDP solution has a rank one property, that is, X∗ = x∗(x∗)T , then x∗ solves problem

(1.1).

Recently, there are research efforts to construct stronger or tighter SDP relaxations for

QCQP. One particular effort is to let y = (x + e)/2 so that problem (1.1) has an equivalent

form within the nonnegative domain:

Maximize 4yTQ0y + (2cT0 − 4eTQ0)y + eTQ0e− cT0 e

Subject to 4yTQiy + (2cTi − 4eTQi)y + eTQie− cTi e = bi, i = 1, . . . ,m,

0 ≤ y ≤ e.

(1.3)

Using the knowledge that all decision variables need to be nonnegative, the following SDP

relaxation can be constructed:

v∗p := Maximize 4Q0 · Y + (2cT0 − 4eTQ0)y + eTQ0e− cT0 e

Subject to 4Qi · Y + (2cTi − 4eTQi)y + eTQie− cTi e = bi, i = 1, . . . ,m,

Yjj ≤ yj ≤ 1, j = 1, 2, · · · , n,

Z :=

[

Y y

yT 1

]

� 0,

Yij ≥ 0, ∀1 ≤ i < j ≤ n.

(1.4)

Since Z � 0 as well as Z ≥ 0, it is called a doubly-positive semidefinite program; e.g., see Dong

et al. [5], Burer [3] and Burer et al. [4]. It is well known that there exists a hierarchy of linear

and semidefinite representable cones that approximate the co-positive and completely positive

cone (see Bomze et al. [2] and Parrilo [13]), where the doubly-positive SDP is a mostly used

relaxation technique due to its computability. Very recent research has discussed its applications

in many areas, e.g., appointment scheduling by Kong et al. [10], order statistics by Natarajan

et al. [11].

The doubly-positive SDP increases the number of constraints from m + n in basic SDP

model (1.2) to m+2n+n(n− 1)/2 in (1.4). With such a sacrifice in computational complexity,

(1.4) must be stronger or tighter than (1.2). In this paper, we are trying to answer this very

question: when and how much is the doubly-positive SDP relaxation tighter than the basic

SDP one?

Besides, in the last section, we manage to extend the doubly-positive relaxation to the

quartic optimization, which has wide applications in sensor network localization [1], portfolio

management with high moments information [9] and et. al., and obtain some results which are

similar to the quadratic optimization.


