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Abstract

A quasi-Newton waveform relaxation (WR) algorithm for semi-linear reaction-diffusion

equations is presented at first in this paper. Using the idea of energy estimate, a general

proof method for convergence of the continuous case and the discrete case of quasi-Newton

WR is given, which appears to be the superlinear rate. The semi-linear wave equation and

semi-linear coupled equations can similarly be solved by quasi-Newton WR algorithm and

be proved as convergent with the energy inequalities. Finally several parallel numerical

experiments are implemented to confirm the effectiveness of the above theories.
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1. Introduction

Waveform relaxation has been applied to problems that model the behavior of very large-

scale circuits. As an iterative solution algorithm, its superiority lies in solving large systems

of time dependent equations in parallel [1, 2]. The large system of differential equations is

decoupled through integrating a sequence of subsystems in fewer unknown variables within

an iterative procedure. As such, waveform relaxation can be regarded as the natural exten-

sion of the classical relaxation methods with iteration vectors consisting of functions in time

(waveforms) instead of scalar values [3]. The method is currently well applied for numerically

solving all kinds of systems, such as differential algebraic equations (DAEs) [4,5], time-periodic

problem [8], integral-differential-algebraic equations [6], fractional functional differential equa-

tions [7,9], etc. The convergence of WR is mainly discussed to present credible theory guarantee.

Then as a combination of WR and parallel-in-time algorithm parareal, parareal WR which

is mainly applied for numerically solving ordinary differential equations (ODEs) is proposed,

such as initial-value problem and time-periodic problem [10, 11]. Moreover, combining WR

with parallel-in-space algorithm Schwarz domain decomposition generates Schwarz waveform

relaxation (SWR) [12–14], which has been extensively studied recently. This time, WR method

has reached high-performance scientific computing applications and usually be employed to

solve partial differential equations (PDEs) indirectly.

Till the present, only a few papers have worked on directly using WR method to solve

PDEs. The existing papers aiming at WR are more of limiting to ODEs that have obvious

scarcities in the high number of iterations. In fact, the application prospect of WR on PDEs

is of significance, such as the significant rapid way for WR method and also for PDEs [15] and

immediately spreading out SWR and PWR directly on PDEs. For the proof of convergence
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of the solution with this new WR, energy estimate is a most universal method that can be

implemented to a variety of PDEs. Therefore, making a connection of the advanced techniques

in theory contributes to generating more useful conclusions.

On the other hand, we notice the defectiveness of classical WR when it refers to the larger

scales of WR iterations and inappropriate mesh grid. By way of directly discreting the equation

in time and space, the new WR algorithm aiming at semi-linear reaction-diffusion equations at

the PDEs level is claimed in [15], with obvious advantages of convergence rate and the number of

iteration compared with those of the classical WR method. The algorithm in [15] applies Picard

relaxation to the splitting function for simplicity, whose process of iteration is relatively slow.

Thus the convergence rate is expected to be improved. In this paper, we develop a theoretical

framework respect to some semi-linear PDEs to study the method for its convergence behavior.

The paper is organized as follows. In Sec.2, the nonlinear term in reaction-diffusion equation

is split as quasi-Newton relaxation, including two special relaxations. Then a new convergence

estimate for the continuous case and the discrete case is given. Next the quasi-Newton WR

algorithm is applicable to the wave equation and coupled equations with its convergence anal-

ysis in Sec.3 and Sec.4. Sec.5 provides some introduction of parallelism technique. Finally

several numerical experiments directed to some kinds of equations are placed on confirming the

effectiveness of the approach.

2. Quasi-Newton Waveform Relaxation Method

2.1. Reaction-diffusion equation

Let Ω be an open, bounded subset of Rn, n ≥ 1,with boundary ∂Ω, and for some fixed time

T > 0, we consider a kind of semi-linear reaction-diffusion equation for the unknown function

u(x, t) : Ω̄× [0, T ] → R as follow















∂u

∂t
−∆u = f(u), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = h(x), x ∈ Ω̄,

(2.1)

where the function h ∈ H1
0 (Ω) and the nonlinear function f ∈ C1(R) are known.

In order to simplify the representation, we restrict ourselves to the semi-linear model in one

space dimension in this paper, but the analysis that we shall present also applies in the general

setting. In this regard, the iterative scheme of new WR algorithm directly at the PDEs level is


















∂u(k+1)

∂t
−

∂2u(k+1)

∂x2
= F (u(k+1), u(k)), (x, t) ∈ Ω× (0, T ),

u(k+1)(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(k+1)(x, 0) = h(x), x ∈ Ω̄.

(2.2)

Using the idea of quasi-linearization to nonlinear function, a parameter α ∈ [0, 1] can be

introduced, then the splitting function is written as

F (u(k+1), u(k)) = (1− α)f(u(k)) + αf(u(k+1)),

here the linearization way for f(u(k+1)) is replaced by Newton method

f(u(k+1)) = f(u(k)) +
∂f

∂u
(u(k))(u(k+1) − u(k)),


