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Abstract

In this paper, we investigate heterogeneous multiscale method (HMM) for the optimal
control problem with distributed control constraints governed by elliptic equations with
highly oscillatory coefficients. The state variable and co-state variable are approximated by
the multiscale discretization scheme that relies on coupled macro and micro finite elements,
whereas the control variable is discretized by the piecewise constant. By applying the well-
known Lions’ Lemma to the discretized optimal control problem, we obtain the necessary
and sufficient optimality conditions. A priori error estimates in both L? and H! norms
are derived for the state, co-state and the control variable with uniform bound constants.
Finally, numerical examples are presented to illustrate our theoretical results.
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1. Introduction

In modern scientific and engineering computation, many important practical problems are
complicated and multiscale ones, such as composite materials with thermal/electrical conduc-
tivity, flow through the heterogeneous porous media, and time scale of the chemical reactions,
etc. These multiscale problems are often described by PDEs with highly oscillatory coeffi-
cients [20]. Many kinds of multiscale computation methods have been researched to deal with
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the intrinsic complexity of the multiscale problems, such as the multigrid method [5,35], adap-
tive method [11], domain decomposition method [34], homogenization method [4], wavelet-based
numerical homogenization method [10], partition of unity method [32], multiscale finite element
method [17], heterogeneous multiscale method [12], variational multiscale method [16], etc.

Also, the optimal control problems governed by PDEs with highly oscillatory coefficients
arise in many real-world problems, including the above-mentioned problems for composite ma-
terials and porous media. Due to the intrinsic complexity of the state equations, it is very
difficult to derive the direct numerical solution for these problems. An important numerical
method is the homogenization method, which could give the overall behavior by incorporat-
ing the fluctuations due to the heterogeneities [25]. There have been many works considering
this method, such as [14,19,23,37]. Another important numerical method is the multiscale
asymptotic method. Lions [24] presented the asymptotic expansions for the optimal control
with small parameter €. Cao considered the multiscale asymptotic expansions to the boundary
control [6], optimal control for elliptic systems with constraints [25] and optimal control for
linear parabolic equations [7]. However, there exists less work about multiscale finite element
method for optimal control problems. To our best knowledge, we only find some results for the
mulitscale finite element method for optimal control problems without constraint in [20], which
have a very different nature compared with the constrained control problems.

In this article, we apply the heterogeneous multiscale finite element method [1-3,12,13]
to solve the optimal control problem governed by elliptic equations with highly oscillatory
coefficients. We derive the continuous and discrete first-order optimality conditions by the
Lagrange multiplier method. And we prove the a priori error estimates in L? and H' norms for
the state variable, the co-state variable, and the control variable with uniform bound constants.
Numerical examples are given to illustrate the validity of the estimates. Compared with other
multiscale finite element methods for optimal control problem such as [20], our work achieves
improved results in the convergence order. Although the result given in [25] was also of ¢, that
work used the multiscale asymptotic analysis.

Our article is organized as follows. In the next section, we present the mathematical setting
and optimality conditions for the elliptic optimal control problems with highly oscillatory coef-
ficients. In Section 3, the heterogeneous multiscale finite element scheme for the optimal control
problem is given and the discretized optimality conditions are obtained. In Section 4, we prove
a priori error estimates in L2 and H! norms for the state variable and the co-state variable,
and in L? norm for the control variable, respectively. In Section 5, we present the numerical
examples to confirm our theoretical findings. Finally, we draw some concluding remarks in
Section 6.

In what follows, C' > 0 or ¢ > 0 denotes a generic constant, independent of €, h and hy.
We denote 2 C R? (d = 2,3) is a bounded domain with Lipschitz boundary dQ and Qp C R?
is another bounded domain with Lipschitz boundary 9y . Generally, Qy can be a subset of
Q. In the special case, we take Qy = Q. We adopt the standard notation W"™4(Q) for Sobolev
space on ) with a norm || - ||;n,¢,0 and a seminorm | - |,,, ¢, 0. Let

W (@) = {v e W) ol = 0f, H™Q) = WD), |- o = |- m2a:

Especially, we take the state space is Hg(Q), and the control space is L?(2y;). The inner
products in L?(Qy) and L?(Q) are indicated by (-, )y and (-, ), respectively.



