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Abstract

By extending the classical analysis techniques due to Samokish, Faddeev and Faddee-

va, and Longsine and McCormick among others, we prove the convergence of the precon-

ditioned steepest descent with implicit deflation (PSD-id) method for solving Hermitian-

definite generalized eigenvalue problems. Furthermore, we derive a nonasymptotic estimate

of the rate of convergence of the PSD-id method. We show that with a proper choice of the

shift, the indefinite shift-and-invert preconditioner is a locally accelerated preconditioner,

and is asymptotically optimal which leads to superlinear convergence Numerical examples

are presented to verify the theoretical results on the convergence behavior of the PSD-

id method for solving ill-conditioned Hermitian-definite generalized eigenvalue problems

arising from electronic structure calculations. While rigorous and full-scale convergence

proofs of preconditioned block steepest descent methods in practical use still largely eludes

us, we believe the theoretical results presented in this paper shed light on an improved

understanding of the convergence behavior of these block methods.
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1. Introduction

We consider the Hermitian-definite generalized eigenvalue problem

Hu = λSu, (1.1)

where H and S are n-by-n Hermitian matrices and S is positive-definite. The scalar λ and

nonzero vector u satisfying (1.1) are called eigenvalue and eigenvector, respectively. The pair
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(λ, u) is called an eigenpair. All eigenvalues of (1.1) are known to be real. Our task is to compute

few smallest eigenvalues and the corresponding eigenvectors. We are particularly interested in

solving the eigenvalue problem (1.1), where the matrices H and S are large and sparse, and

there is no obvious gap between the eigenvalues of interest and the rest. Furthermore, S is

nearly singular and H and S share a near-nullspace. It is called an ill-conditioned generalized

eigenvalue problem in [5], a term we will adopt in this paper. The ill-conditioned generalized

eigenvalue problem is considered to be an extremely challenging problem.1)

Beside examples such as those cited in [5], the ill-conditioned eigenvalue problem (1.1) aris-

es from the discretization of enriched Galerkin methods. The partition-of-unity finite element

(PUFE) method [14], which falls within the class of enriched Galerkin methods, is a promising

approach in quantum-mechanical materials calculations, see [3] and references therein. In the

PUFE method, physics-based basis functions are added to the classical finite element (polyno-

mial basis) approximation, which affords the method improved accuracy at reduced costs versus

existing techniques. However, due to near linear-dependence between the polynomial and en-

riched basis functions, the system matrices that stem from such methods are ill-conditioned, and

share a large common near-nullspace. Furthermore, there is in general no clear gap between the

eigenvalues that will be sought and the rest. Another example of the ill-conditioned eigenvalue

problem (1.1) arises from modeling protein dynamics using normal-mode analysis [2,10,11,17].

In this paper, we focus on a preconditioned steepest descent with implicit deflation method,

PSD-id method in short, to solve the eigenvalue problems (1.1). The basic idea of the PSD-id

method is simple. Denote all the eigenpairs of (1.1) by (λ1, u1), (λ2, u2), . . . , (λn, un), and

the eigenvalue and eigenvector matrices by Λ = diag(λ1, λ2, . . . , λn) and U = [u1 u2 · · · un],
respectively. Assume that the eigenvalues {λi} are in an ascending order λ1 ≤ λ2 ≤ · · · ≤ λn.

The following variational principles are well-known, see [27, p.99] for example:

λi = min
UH

i−1
Sz=0

ρ(z) and ui = argmin
UH

i−1
Sz=0

ρ(z), (1.2)

where Ui−1 = [u1 u2 · · · ui−1] and ρ(z) is the Rayleigh quotient

ρ(z) =
zHHz

zHSz
. (1.3)

On assuming that Ui−1 is known, one can find the ith eigenpair by minimizing the Rayleigh

quotient ρ(z) with z being S-orthogonal against Ui−1 under the algorithmic framework of the

preconditioned steepest descent minimization.

The idea of computing the algebraically largest eigenvalue and its corresponding eigenvector

of (1.1) (with B = I) using the steepest descent (SD) method dates back to early 1950s [7]

and [4, Chap.7]. In [13], block steepest descent (BSD) methods are proposed to compute several

eigenpairs simultaneously. The preconditioned steepest descent (PSD) method was introduced

around late 1950s [24, 25]. The block PSD (BPSD) methods have appeared in the literature,

see [1, 16] and references therein. Like the PSD method, the PSD-id method studied in this

paper computes one eigenpair at a time. To compute the ith eigenpair, the search subspace

of PSD-id is implicitly orthogonalized against the previously computed i− 1 eigenvectors. The

preconditioner at each iteration of PSD-id is flexible (i.e., could change at every iteration) and

can be indefinite, instead of being fixed and positive definite as in [1, 16, 25].

1) W. Kahan, Refining the general symmetric definite eigenproblem, poster presentation at Householder Sym-

posium XVIII 2011, available http://www.cs.berkeley.edu/∼wkahan/HHXVIII.pdf


