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Abstract

Over the last ten years, Finite Element Exterior Calculus (FEEC) has been developed as

a general framework for linear mixed variational problems, their numerical approximation

by mixed methods, and their error analysis. The basic approach in FEEC, pioneered

by Arnold, Falk, and Winther in two seminal articles in 2006 and 2010, interprets these

problems in the setting of Hilbert complexes, leading to a more general and complete

understanding. Over the last five years, the FEEC framework has been extended to a

broader set of problems. One such extension, due to Holst and Stern in 2012, was to

problems with variational crimes, allowing for the analysis and numerical approximation

of linear and geometric elliptic partial differential equations on Riemannian manifolds of

arbitrary spatial dimension. Their results substantially generalize the existing surface

finite element approximation theory in several respects. In 2014, Gillette, Holst, and

Zhu extended FEEC in another direction, namely to parabolic and hyperbolic evolution

systems by combining the FEEC framework for elliptic operators with classical approaches

for parabolic and hyperbolic operators, by viewing solutions to the evolution problem as

lying in Bochner spaces (spaces of Banach-space valued parametrized curves). Related

work on developing an FEEC theory for parabolic evolution problems has also been done

independently by Arnold and Chen. In this article, we extend the work of Gillette-Holst-

Zhu and Arnold-Chen to evolution problems on Riemannian manifolds, through the use of

framework developed by Holst and Stern for analyzing variational crimes. We establish a

priori error estimates that reduce to the results from earlier work in the flat (non-criminal)

setting. Some numerical examples are also presented.
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1. Introduction

Arnold, Falk, and Winther [2, 3] introduced Finite Element Exterior Calculus (FEEC) as

a general framework for linear mixed variational problems, their numerical approximation by

mixed methods, and their error analysis. They recast these problems using the ideas and

tools of Hilbert complexes, leading to a more complete understanding. Subsequently, Holst

and Stern [24] extended the Arnold–Falk–Winther framework to include variational crimes,

allowing for the analysis and numerical approximation of linear and geometric elliptic partial

differential equations on Riemannian manifolds of arbitrary spatial dimension, generalizing the
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existing surface finite element approximation theory in several directions. Gillette, Holst, and

Zhu [22] extended FEEC in another direction, namely to parabolic and hyperbolic evolution

systems by combining recent work on FEEC for elliptic problems with a classical approach

of Thomée [35] to solving evolution problems using semi-discrete finite element methods, by

viewing solutions to the evolution problem as lying in Bochner spaces (spaces of Banach-space

valued parametrized curves). Arnold and Chen [1] independently developed related work, for

generalized Hodge Laplacian parabolic problems for differential forms of arbitrary degree, and

Holst, Mihalik, and Szypowski [23] consider similar work in adaptive finite element methods.

In this article, we aim to combine the approaches of the above articles, extending the work

of Gillette, Holst, and Zhu [22] and Arnold and Chen [1] to evolution problems in abstract

Hilbert complexes by using the framework of Holst and Stern [24]. We then apply the results to

parabolic problems on Riemannian hypersurfaces approximated by piecewise polynomial curved

triangulations in a tubular neighborhood, using piecewise polynomial finite element spaces. As

in earlier literature on finite elements on approximating surfaces by Dziuk [17], Dziuk and

Demlow [16], and Demlow [15], the error splits into a PDE approximation term and a surface

approximation term. An interesting result that follows is that the optimal rate of convergence

occurs when the polynomial degree of both the approximating surfaces and the finite element

spaces are the same (the isoparametric case). Similar observations have been made for the

surface finite element method [15] and in the isogeometric analysis literature [12, 26].

1.1. The Hodge heat equation and its mixed form

We now motivate our problem with a concrete example. We consider an evolution equation

for differential forms on a manifold, and then we rephrase it as a mixed problem as an inter-

mediate step toward semidiscretization using mixed finite element methods. We then see how

this allows us to leverage existing a priori error estimates for parabolic problems, and see how

it fits in the framework of Hilbert complexes.

Let M be a smooth compact oriented Riemannian n-manifold without boundary embedded

in R
n+1. The Hodge heat equation is to find time-dependent k-form

u :M × [0, T ] → Λk(M)

(where Λk(M) denotes the bundle of alternating k-tensors on M) such that

ut −∆u = ut + (δd+ dδ)u = f in M , for t > 0

u(·, 0) = g in M .
(1.1)

where g is an initial k-form, and f , a possibly time-dependent k-form, is a source term. Note

that no boundary conditions are needed since ∂M = ∅. This is the problem studied by Arnold

and Chen [1], and in the case k = n, one of the problems studied by Gillette, Holst, and Zhu [22],

building upon work in special cases for domains in R
2 and R

3 by Johnson and Thomée [27,35]

For the stability of the numerical approximations with the methods of [25] and [3], we recast

the problem in mixed form, converting the problem into a system of differential equations.

Motivating the problem by setting σ = δu (recall that for the Dirichlet problem and k = n,

δ here corresponds to the negative of the gradient in Euclidean space, and is the adjoint of d,

corresponding to the divergence), and taking the adjoint, we have

〈σ, ω〉 − 〈u, dω〉 = 0, ∀ ω ∈ HΩk−1(M), t > 0,

〈ut, ϕ〉 + 〈dσ, ϕ〉 + 〈du, dϕ〉 = 〈f, ϕ〉, ∀ ϕ ∈ HΩk(M) t > 0,

u(0) = g

(1.2)


