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Abstract

For nonsymmetric saddle point problems, Huang et al. in [Numer. Algor. 75 (2017),

pp. 1161-1191] established a generalized variant of the deteriorated positive semi-definite

and skew-Hermitian splitting (GVDPSS) preconditioner to expedite the convergence speed

of the Krylov subspace iteration methods like the GMRES method. In this paper, some

new convergence properties as well as some new numerical results are presented to validate

the theoretical results.
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1. Introduction

Consider the solution of large sparse saddle point problems of the form

Au ≡
(

A BT

−B 0

)(
x

y

)
=

(
f

−g

)
≡ b, (1.1)

where A ∈ R
n×n, the matrix B ∈ R

m×n is of full row rank with m ≤ n, BT denotes the

transpose of the matrix B. Moreover, x, f ∈ R
n and y, g ∈ R

m. We are especially interested in

cases that the matrix A is symmetric positive definite or nonsymmetric with positive definite

symmetric part (i.e., A is real positive). When A = AT , the linear system (1.1) is called the

symmetric saddle point problem and, when A 6= AT , it is called the nonsymmetric saddle point

problem. According to Lemma 1.1 in [7] the matrix A is nonsingular.

In the last decade, there has been tremendous efforts to develop fast solution methods

for solving the saddle point problems. As is well-known, Krylov subspace methods [15] are

the most effective methods for solving the saddle point problems of the form (1.1). But the

convergence rate of these methods depend closely on the eigenvalues and the eigenvectors of the
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coefficient matrix [1,15] and they tend to converge slowly when are applied to the saddle point

problem (1.1). In general, favourable rates of convergence of Krylov subspace methods are often

incorporated with a well-clustered spectrum of the preconditioned matrices (away from zero).

Therefore, many kinds of preconditioners have been studied in the literature for saddle point

matrix, e.g., HSS-based preconditioners [2, 4, 5, 7], block diagonal preconditioners [17], block

triangular preconditioners [3, 17], shift-splitting preconditioners [6, 10], and so on.

Zhang and Gu in [18] established a variant of the deteriorated positive semi-definite and

skew-Hermitian splitting (VDPSS) preconditioner as follows

MVDPSS =

(
A 1

α
ABT

−B αI

)
, (1.2)

for the problem (1.1). Recently, Huang et al. in [13] proposed a generalization of the VDPSS

(GVDPSS) preconditioner of the form

PGVDPSS =

(
A 1

α
ABT

−B βI

)
. (1.3)

The difference between PGVDPSS and A is given by

RGV DPSS = PGVDPSS −A =

(
0 1

α
ABT −BT

0 βI

)
.

It follows from the latter equation that as β −→ 0+, the (2, 2)-block of RGVDPSS tends to zero

matrix and as α −→ +∞, the (1, 2)-block of R tends to −BT . So, it seems that the GVDPSS

preconditioner with proper parameters α and β is more closer to the coefficient matrix A than

the VDPSS preconditioner due to the independence of the parameters and, as a result, the

corresponding preconditioned matrix will have a well-clustered spectrum.

It can be seen that by choosing different values for the parameters α and β, the GVDPSS

preconditioner coincides with some existing preconditioners such as the RHSS preconditioner

[11], the REHSS preconditioner [16], the RDPSS preconditioner [9] and the VDPSS precondi-

tioner [18].

The GVDPSS preconditioner can be derived from the GVDPSS iteration method. Huang

et al. have presented the convergence properties of the GVDPSS iteration method and the

spectral properties of the corresponding preconditioned matrix in [13], but nothing about the

optimal values of the involved parameters. In this paper, we present new convergence properties

and the optimal parameters, which minimize the spectral radius of the iteration matrix of the

GVDPSS iteration method.

2. New Convergence Results for the GVDPSS Iteration Method

The GVDPSS preconditioner PGVDPSS can be induced by a fixed-point iteration, which is

based on the following splitting of the coefficient matrix A:

A = PGVDPSS −RGV DPSS

(
A 1

α
ABT

−B βI

)
−
(

0 1
α
ABT −BT

0 βI

)
. (2.1)

Based on this splitting, the GVDPSS iteration method can be constructed as
(

A 1
α
ABT

−B βI

)
u(k+1) =

(
0 1

α
ABT −BT

0 βI

)
u(k) +

(
f

−g

)
, (2.2)


