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Abstract

This paper develops a framework to deal with the unconditional superclose analysis of

nonlinear parabolic equation. Taking the finite element pair Q11/Q01×Q10 as an example,

a new mixed finite element method (FEM) is established and the τ -independent superclose

results of the original variable u in H1-norm and the flux variable ~q = −a(u)∇u in L2-

norm are deduced (τ is the temporal partition parameter). A key to our analysis is an

error splitting technique, with which the time-discrete and the spatial-discrete systems are

constructed, respectively. For the first system, the boundedness of the temporal errors are

obtained. For the second system, the spatial superclose results are presented uncondition-

ally, while the previous literature always only obtain the convergent estimates or require

certain time step conditions. Finally, some numerical results are provided to confirm the

theoretical analysis, and show the efficiency of the proposed method.
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1. Introduction

Let Ω ⊂ R
2 be a rectangle with boundary ∂Ω and 0 < T < ∞. We develop and analyze a

mixed FEM to the following time-dependent nonlinear parabolic equation:





ut −∇ · (a(u)∇u) = f(X, t), (X, t) ∈ Ω× (0, T ],

u = 0, (X, t) ∈ ∂Ω× (0, T ],

u(X, 0) = u0(X), X ∈ Ω,

(1.1)

where X = (x, y), a(u) and f(X, t) are smooth functions. Assume that there exist con-

stants µ, M, B such that 0 < µ ≤ a(u) ≤ M , |a′(u) + a′′(u)| ≤ B. For the nonlinear

problem of (1.1), [1] constructed the linearized Galerkin FEM and derived optimal error of or-

der O(h2+τ2) in L2-norm. With the linearized Galerkin FEMs, [2] and [3] discussed three-level

Galerkin method and implicit-explicit multistep FEMs, and obtained optimal order error esti-

mates, respectively. For other nonlinear problems, numerious efforts have been devoted to the

development of efficient numerical schemes, such as the nonlinear parabolic integro-differential

equations [4-6], nonlinear Schrödinger equations [7-10], Navier-Stokes equations [11-13] and

others [14-18].
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It is known that the approximating spaces should satisfy the so-called Babuska-Brezzi con-

dition in the usual mixed FEMs. In order to make the requirement to be satisfied easier, a

mixed finite element form was established in [19] for second elliptic problems, in which the two

spaces just need to fulfill a very simple inclusion relationship. Motivated by this work, the non-

conforming pair EQrot
1 /Q10 ×Q01 was used to research a linear Sobolev equation and optimal

error estimates and superclose results were received in [20]. For the linear parabolic problem,

[21] deduced optimal error estimates based on the triangular nonconforming finite element pair

P1/P0 × P0, and [22] showed the supercloseness as well as the extrapolation results with the

nonconforming element pair EQrot
1 /Q10 × Q01 of [20]. Note that [23,24] discussed the linear

elasticity problem and the nonlinear Schrödinger equation with conforming finite element pairs,

respectively.

Generally speaking, to deduce optimal error estimates of linearized Galerkin FEMs, one

may use mathematical induction with an inverse inequality to bound the numerical solution in

L∞ norm, such as

‖Un
h −Rhu

n‖L∞ ≤ Ch−
d
2 ‖Un

h −Rhu
n‖0 ≤ Ch−

d
2 (hr+1 + τm), (1.2)

Here and later, Un
h and un are the finite element approximation and the exact solution at time

tn, respectively, and Rh is a certain projection operator, C is a positive constant independent

of τ and h. The inequality (1.2) results in the time-step restriction, and extremely time-

consuming in practical computations see, e.g., [3-18,24,25]. However, it has been shown that

the time restriction may not be necessary in many cases (see [26 − 33]). Not long ago, a new

error analysis technique was proposed by [26] (also see [27]) for a Joule heating system with

a standard Galerkin FEM, which splitted the numerical error into two parts, the spatial error

and the temporal error. Then, the estiamte of (1.2) can be replaced by

‖Un
h −RhU

n‖L∞ ≤ Ch−
d
2 ‖Un

h −RhU
n‖0 ≤ Ch−

d
2 hr+1, (1.3)

where Un is the time-discrete solution. Therefore, the bouneness of Un
h can be deduced without

any time-restriction. Consequently, [28-31] applied this idea to investigate various nonlinear

problems and obtained the unconditional error estimates, respectively. But in the above studies,

they only focused on the analysis of time-independent error estimates for the lineared Galerkin

FEMs. Recently, [32] studied a mixed finite element scheme for the nonlinear Sobolev equation,

and obtain the unconditionaliy superclose and superconvergent results by avoiding the estimate

of the numerical solution in L∞-norm. Of course, the method can’t be used in this equation of

(1.1). [33] derived the unconditionally superconvergent results for nonlinear parabolic equation

with nonconforming EQrot
1 elemrnt. In this paper, we study the linearized mixed finite element

scheme for problem (1.1) with element pair Q11/Q01 × Q10, and deduce the τ -independent

superclose results through rigorous analysis.

The rest of the paper is organized as follows. In Section 2, the linearized time-discrete

system is presented and the boundedness of the numerical solution in L∞ norm for the original

variable u and the flux variable ~q = −a(u)∇u are deduced, which will play an important role

in the superclose analysis. In Section 3, we develop the new mixed finite element scheme and

some notations. In Section 4, we give the linearized FEM for the spatial-discrete system and

derive the corresponding superclose estimates of order O(h2 + τ2) unconditionally. In Section

5, some numerical results are provided to verify the theoretical analysis.


