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Abstract

In this paper, we consider the recovery of block sparse signals, whose nonzero entries

appear in blocks (or clusters) rather than spread arbitrarily throughout the signal, from

incomplete linear measurements. A high order sufficient condition based on block RIP

is obtained to guarantee the stable recovery of all block sparse signals in the presence

of noise, and robust recovery when signals are not exactly block sparse via mixed l2/l1
minimization. Moreover, a concrete example is established to ensure the condition is

sharp. The significance of the results presented in this paper lies in the fact that recovery

may be possible under more general conditions by exploiting the block structure of the

sparsity pattern instead of the conventional sparsity pattern.
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1. Introduction

Compressed sensing (CS), a new type of sampling theory, is a fast growing field of research.

It has attracted considerable interest in a number of fields including applied mathematics, statis-

tics, seismology, signal processing and electrical engineering. Interesting applications include

radar system [26,50], coding theory [1,13], DNA microarrays [39], color imaging [33], magnetic

resonance imaging [31]. Up to now, there are already many works on CS [3,4,15–17,29,30,40–44].

The key problem in CS is to recover an unknown high-dimensional sparse signal x ∈ R
N using an

efficient algorithm through a sensing matrix A ∈ R
n×N and the following linear measurements

y = Ax+ z (1.1)

where the observed signal y ∈ R
n, n ≪ N and the vector of measurement errors z ∈ R

n. In

general, the solutions to the underdetermined system of linear equations (1.1) are not unique.

But now suppose that x is known to be sparse in the sense that it contains only a small number

of nonzero entries, which can occur in anywhere in x. This premise fundamentally changes

the problem such that there is a unique sparse solution under regularity conditions. It is well

known the l1 minimization approach, a widely used algorithm, is an effective way to recover

sparse signals in many settings. One of the most widely used frameworks to depict recovery
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ability of l1 minimization in CS is the restricted isometry property (RIP) introduced by Candès

and Tao [13]. Let A ∈ R
n×N be a matrix and 1 ≤ k ≤ N is an integer, the restricted isometry

constant (RIC) δk of order k is defined as the smallest nonnegative constant that satisfies

(1 − δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22,

for all k−sparse vectors x ∈ R
N . A vector x ∈ R

N is k−sparse if |supp(x)| ≤ k, where supp(x) =

{i : xi 6= 0} is the support of x. When k is not an integer, we define δk as δ⌈k⌉. It has been shown

l1 minimization can recover a sparse signal with a small or zero error under some appropriate

RIC met by the measurement matrix A [5–12, 23, 24, 37]. As far as we know, a sharp sufficient

condition based on RIP for exact and stable recovery of signals in both noiseless and noisy cases

by l1 minimization was established by Cai and Zhang [8].

However, in practical examples, there are signals which have a particular sparsity pattern,

where the nonzero coefficients appear in some blocks (or clusters). Such signals are referred

to as block sparse [19, 20, 46]. In practice, the block sparse structure is very common, such as

reconstruction of multi-band signals [35], equalization of sparse communication channels [18]

and multiple measurement vector (MMV) model [20, 21, 36]. Actually, the notion of block

sparsity was already introduced in statistics literature and was named the group Lasso estimator

[2,14,27,34,38,48]. Recently, block sparsity pattern has attracted significant attention. Various

efficient methods and explicit recovery guarantees [19,20,22,25,28,32,45–47] have been proposed.

In this paper, our goal is to recover the unknown signal x from linear measurements (1.1).

But at the moment, nonzero elements of signal x are occurring in blocks (or clusters) instead

of spreading arbitrarily throughout the signal vector. To this end, firstly, we need the concept

of block sparsity. In order to emphasize the block structure, similar to [20, 46], we view x as a

concatenation of blocks over I = {d1, d2, . . . , dM}. Then x can be expressed as

x = (x1, . . . , xd1︸ ︷︷ ︸
x[1]

, xd1+1, . . . , xd1+d2︸ ︷︷ ︸
x[2]

, . . . , xN−dM+1, . . . , xN︸ ︷︷ ︸
x[M ]

)T ∈ R
N ,

where x[i] denotes the ith block of x with the length di and N =
∑M

i=1 di. A vector x ∈ R
N

is called block k−sparse over I = {d1, d2, . . . , dM} if the number of nonzero vectors x[i] is at

most k for i ∈ {1, 2, . . . ,M}. Define

‖x‖2,0 =
M∑

i=1

I(‖x[i]‖2 > 0),

where I(·) is an indicator function that it equals to 1 if its argument is larger than zero and 0

elsewhere. Then the block k−sparse vector over I = {d1, d2, . . . , dM} can be cast as ‖x‖2,0 ≤ k.

If di = 1 for all i, block sparsity is just the conventional sparsity. Next, one of the efficient

methods to recover block sparse signals is mixed l2/l1 minimization

min
x

‖x‖2,1, ‖y −Ax‖2 ≤ ε, (1.2)

where ‖x‖2,1 =
∑M

i=1 ‖x[i]‖2. Moreover, mixed norm ‖x‖2,2 = (
∑M

i=1 ‖x[i]‖22)1/2 and ‖x‖2,∞ =

maxi ‖x[i]‖2. Note that ‖x‖2,2 = ‖x‖2. It is easy to know the mixed norm minimization is

a generalization of conventional norm minimization. To ensure uniqueness and stability of

solution for the system (1.1) via mixed l2/l1 minimization, Eldar and Mishali [20] generalized

the notion of standard restricted isometry property to block sparse vectors, and obtained the

following concept of block restricted isometry property (block RIP).


