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Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad,

Serbia

Email: zorana@dmi.uns.ac.rs

Irena Stojkovska

Department of Mathematics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius

University, Skopje, Macedonia,

Email: irenatra@pmf.ukim.mk

Milena Kresoja

Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad,

Serbia

Email: milena.kresoja@dmi.uns.ac.rs

Abstract

A stochastic approximation (SA) algorithm with new adaptive step sizes for solving

unconstrained minimization problems in noisy environment is proposed. New adaptive

step size scheme uses ordered statistics of fixed number of previous noisy function values

as a criterion for accepting good and rejecting bad steps. The scheme allows the algo-

rithm to move in bigger steps and avoid steps proportional to 1/k when it is expected that

larger steps will improve the performance. An algorithm with the new adaptive scheme is

defined for a general descent direction. The almost sure convergence is established. The

performance of new algorithm is tested on a set of standard test problems and compared

with relevant algorithms. Numerical results support theoretical expectations and verify

efficiency of the algorithm regardless of chosen search direction and noise level. Numeri-

cal results on problems arising in machine learning are also presented. Linear regression

problem is considered using real data set. The results suggest that the proposed algorithm

shows promise.
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1. Introduction

The main aim of the paper is to propose and analyse a new algorithm with adaptive step

sizes for solving stochastic optimization problems. The problem under our consideration is an

unconstrained minimization problem in noisy environment,

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a continuously differentiable, possibly nonconvex function bounded below

on R
n. We assume that only noisy observations of the objective function f(x) and its gradient
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∇f(x) = g(x) are available for all x ∈ R
n. Denote by ξ and ε random variable and random

vector, respectively, defined on a probability space (Ω,F , P ). The noisy function and noisy

gradient at each x ∈ R
n, in this set-up, are given by

F (x) = f(x) + ξ and G(x) = g(x) + ε, (1.2)

where ξ and ε represent the random noise terms. Also, we denote by x∗ ∈ R
n a stationary point

of f(x) in (1.1), that is g(x∗) = 0. Throughout the paper we will use the following notation

Fk = F (xk) = f(xk) + ξk = fk + ξk

Gk = G(xk) = g(xk) + εk = gk + εk, (1.3)

where xk is kth iteration. Index k used with ε and ξ allows us to consider the cases when the

noise-generating process may change with k. We will refer the standard deviation of the noise

term ε as noise level.

The most common method for solving problem (1.1) is Stochastic Approximation (SA) algo-

rithm proposed by Robbins and Monro, [16]. It is introduced for finding roots of one-dimensional

nonlinear scalar function and later extended to multidimensional systems by Blum, [2]. Iter-

ative rule of SA algorithm is motivated by the gradient direction method and uses only noisy

gradient observations. For a given initial iteration x0, iterative rule is given by the formula

xk+1 = xk − akGk, (1.4)

where ak > 0 is a step size and Gk is the noisy gradient at xk defined by (1.3). The sequence

{ak} is called the sequence of step size lengths or gain sequence. The convergence of SA method

is achievable in a stochastic sense under certain assumptions. Robbins and Monro established

mean square (m.s.) convergence, [16], while almost sure (a.s.) convergence is established by

Chen, [7] and Spall, [18]. They proved that method (1.4) converges to a solution of the system

g(x) = 0.

The performance of SA method depends mostly on the choice of the step size sequence.

Numerous modifications of SA algorithm based on the step size selection are proposed to im-

prove the optimization process. Kesten, [9], proposed an accelerated SA algorithm, for one

dimensional case, with the step sizes that depend on the frequency of sign changes of the differ-

ences between two successive iterations. The a.s. convergence of the accelerated SA algorithm

is established. The method is extended for multidimensional problems and a.s. convergence

is proved by Delyon and Juditsky, [8]. Idea of monitoring sign is further studied by Xu and

Dai, [21]. An algorithm with adaptive step sizes is proposed by Yousefian et al., [22] where

authors propose a scheme for minimizing strongly convex differentiable functions in noisy en-

vironment. The scheme generates a step size sequence that is a decreasing piecewise-constant

function with a decrease that occurs when a suitable threshold error is met. SA algorithm

with a line-search is proposed by Krejić et al., [10]. A line search along the negative gradient

direction is applied while the iterates are far away from the solution and upon reaching some

neighbourhood of the solution the method switches to SA rule. Approach in [10] is recently

extended to general descent direction case by Krejić et al., [11]. This result allows application of

faster, second-order methods while keeping the almost sure convergence. Algorithms that use

second-order directions are frequently applied for solving large-scale problems in machine learn-

ing. SA algorithm with a quasi-Newton direction is successfully applied in [4–6]. A stochastic

quasi-Newton method for solving nonconvex stochastic optimization problems is also proposed


