ESTIMATION OF THE SEPARATION OF TWO MATRICES (II)*

SUN JI-GUANG (孙继广)

(Computing Center, Academia Sinica, Beljing, China)

Abstract

In this paper we give a lower bound of the separation $\operatorname{sep}_F(A, B)$ of two diagonalizable matrices A and B. The key to finding the lower bound of $\operatorname{sep}_F(A, B)$ is to find an upper bound for the condition number $\kappa(Q)$ of a transformation matrix Q which transforms a diagonalizable matrix A to a diagonal form. The obtained lower bound of $\operatorname{sep}_F(A, B)$ involves the eigenvalues of A and B as well as the departures from normality $\Delta_F(A)$ and $\Delta_F(B)$.

This is a continuation of [6]. In addition to the notation explained in [6] we use \mathbb{C}^n for the n-dimensional column vector space, and $\Re(X)$ for the column space of a matrix X. \oplus denotes the direct sum of subspaces, and \mathscr{X}^1 the orthogonal complement of a subspace \mathscr{X} . Besides, X^H stand for conjugate transpose of X.

§ 4. An Upper Bound for the Spectral Condition Number of a Diagonalizable Matrix

Let A and B be diagonalizable matrices with the eigenvalues $\{\lambda_i\}$ and $\{\mu_i\}$ respectively, Q_A and Q_B be transformation matrices which transform A and B to diagonal forms. It is proved that if we set

$$\delta(A, B) = \min_{i,j} |\lambda_i - \mu_j| \qquad (4.1)$$

and

$$\varkappa(Q) = \|Q\|_2 \|Q^{-1}\|_2, \tag{4.2}$$

then[5, 8]

$$\frac{\delta(A, B)}{\varkappa(Q_A)\varkappa(Q_B)} \leqslant \sup_{F} (A, B) \leqslant \delta(A, B). \tag{4.3}$$

Therefore, estimation of a lower bound for the separation $\operatorname{sep}_F(A, B)$ is reduced to estimations of upper bounds for the condition numbers $\varkappa(Q_A)$ and $\varkappa(Q_B)$.

In this section we use the characteristic of a diagonalizable matrix A to give an upper bound for the spectral condition number $\inf_{Q} \kappa(Q)$ of A, here the inf taking over all Q which similarity transforms A to a diagonal form.

For a nonsingular matrix Q, we set

$$K(Q) = \|Q\|_{\mathbf{F}} \|Q^{-1}\|_{\mathbf{F}}. \tag{4.4}$$

The following lemma delineates the relation between the K(Q) and $\varkappa(Q)$.

Lemma 4.1. Suppose that $Q \in \mathbb{C}^{m \times m}$ is nonsingular. Then

^{*} Received February 17, 1984.

$$1 + \frac{K(Q) - m + \sqrt{K^{2}(Q) - m^{2}}}{m} \leq \varkappa(Q)$$

$$\leq 1 + \frac{K(Q) - m + \sqrt{[K(Q) - m + 2]^{2} - 4}}{2}.$$
(4.5)

Proof. Let K = K(Q) and $\varkappa = \varkappa(Q)$. By Theorem 1 of [4],

$$m-2+\varkappa+\varkappa^{-1} \leq K \leq \frac{1}{2} m(\varkappa+\varkappa^{-1}).$$
 (4.6)

Combining $\varkappa + \varkappa^{-1} \ge 2$ and the first inequality of (4.6), we get $K \ge m$. From the second inequality of (4.6),

$$0 < \varkappa \leq 1 - \frac{\sqrt{K^2 - m^2} - (K - m)}{m}, \quad \varkappa \geq 1 + \frac{K - m + \sqrt{K^2 - m^2}}{m}; \quad (4.7)$$

and from the first inequality of (4.6),

$$1 - \frac{\sqrt{(K - m + 2)^2 - 4} - (K - m)}{2} \leq \varkappa \leq 1 + \frac{K - m + \sqrt{(K - m + 2)^2 - 4}}{2}. \tag{4.8}$$

Observe that

$$\frac{K-m+\sqrt{K^2-m^2}}{m} \leqslant \frac{K-m+\sqrt{(K-m+2)^2-4}}{2},$$

$$0 \leqslant \frac{\sqrt{K^2-m^2}-(K-m)}{m} \leqslant \frac{\sqrt{(K-m+2)^2-4}-(K-m)}{2}$$

$$\frac{\sqrt{K^3-m^2}-(K-m)}{m} = 0 \quad \text{iff } K=m \quad \text{iff } \kappa=1,$$

and

hence, from (4.7) and (4.8) we obtain the inequalities (4.5) at once.

Now we cite a theorem proved by Elsner [2], which is a generalization of a result due to Smith [4].

Theorem 4.1. Suppose that $A \in \mathbb{C}^{m \times m}$ with different eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$ of multiplicities m_1, m_2, \dots, m_r respectively. Let $\mathbb{C}^m = \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus \dots \oplus \mathcal{X}_r$, \mathcal{X}_i be the invariant subspace of A corresponding to the λ_i with $\dim(\mathcal{X}_i) = m_i$, $i = 1, 2, \dots, r$. If we set $\mathcal{Y}_i = \bigcap_{i \neq i} \mathcal{X}_i^{\perp}$, $i = 1, 2, \dots, r$, and

 $\mathcal{Q} = \{Q = (Q_1, Q_2, \dots, Q_r) : \Re(Q_i) = \mathcal{X}_i, i = 1, \dots, r\},\$

then

$$\min_{Q \in \mathcal{Q}} K(Q) = \sum_{i=1}^{r} \sum_{j=1}^{m_i} \frac{1}{\sigma_i^{(j)}}, \tag{4.9}$$

where $\{\sigma_i^{(j)}\}_{j=1}^{m_i}$ are the singular values of $P_i^HQ_i$ in which the P_i and Q_i satisfy $\Re(P_i) = \mathscr{Y}_i$, $\Re(Q_i) = \mathscr{X}_i$ and

$$P_i^H P_i = Q_i^H Q_i = I^{(m_i)}, \quad i = 1, 2, \dots, r.$$

The Schur decomposition of any diagonalizable matrix has an important characteristic clarified by the following lemma.

Lemma 4.2. Let A be an $m \times m$ diagonalizable matrix with Schur decomposition $U^{H}AU = A + M \equiv T. \tag{4.10}$

where U is a unitary matrix, M is a strictly upper triangular matrix (i.e., M is an upper triangular matrix with zeros on its diagonal) and