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Abstract

In this paper we give a lower bound of the separation sepy(4, B) of two diagonalizable
matrices 4 and B. The koy to finding the lower bound of sepy(4, B) is to find an upper bound for
the condition number x(Q) of a transformation matrix @ which transforms a diagonalizable matrix
4 to a djagoral form. The obtained lower bound of sepr(4, B) involves the eigenvalues of 4 and B

as well as the departures from normality 4-(4) and 4z(B).

This is a continnation of {6]. In addition to the nofation explained in [6] we
nse C* for the n-~d1men510na1 colnmn vector space, and R(X) for the column space
of a matrix-X. @ denotes the direct sum of subspaces, and Z™* the orthogonal

complement of a subspace 2. Besides, X ¥ stand for conjugate transpose of X.

§ 4. An Upper Bound for the Spéctral Condition
Number of a Dlagonallzable Matrix

Let A and B be diagonalizable matrices with the eigenvalunes {}.;,} and { e}
respectively, Q4 and @z be fransformation matrices which transform A4 and B to

diagonal forms. It is proved that if we set

5(4, B)=min [M—py| @D

and | | |
thent®® (@=1Qhle s @)
u(ﬁéﬁ;i})ﬂ) 'ésepp(ﬁ, .B) {6 (A, B). | (4.3)

Thersfore, estimation of a Jower bound for the separation sepr(A, B) is reduced to

estimations of upper bounds for the condition numbers x(@,) and 2(Qz).
In this section we use the characteristic of a diagonalizable matrix 4 to give an

upper bound for the spectral condition number infx(@) of 4, here the inf taking

over all @ which similarity transforms A to a diagonal form.
For a nongingular matrix ¢}, we set

K(@)=|Q|r] Q‘illr (4.4)

The following lemma delineates the relation between the K (@) and x(Q).
Lemma 4.1. Suppose that @ C™™ is nonsingular. Then

il # Tk
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1.4 K@) —m+« K*(Q)—m* <#(Q)

K(@Q) —m+ K @Q —m+2]°—4 |
i 5 T i (4.5)

Proof. Let K=K (@) and x=x(q). By Theorem 1 of [4],

<14

m-—2+x+x‘1<§£’=€2% m(x+x"1). (4.6)

Combining »+x*>2 and the first inequality of (4.6), we get K>=m. From the
gecond inequality of (4.6),

«f’E’ﬂ_mﬂm; (K —m) TR I{ m IIW:/KE_ME; (4.7)

O<Tpe<1—

and from the first inequality of (4.6),

v (K —m+2)2—4 — (K —m) K —m+ (E-m+2)"—4
5 . <Lx<< 14 S . (4.8)

R

QObserve 1;]:_13,1;

K-m+NE—m _ K-—m+(E-—mr2) 4
# am, : : 9 =

Og..y’m__m: (B sy g ® (K-*m—l-?)";—-i R i

“»

VER-mi— (K —=m) _o i Kem iff x=1,

m
hence, from (4.7) and (4.8) we obfain the inequalities (4.5) at once.

. Now we cite a theorem proved by Elsner'™, which i3 a generalization of a result
due to Smith™. T |

Theorem 4.1. Suppose that ACCT™™ with different eigenvalues Ay, Ag, ==+, A 0f

madtiplicities ma, ma, ---, m, respectively, Let C"=2 1@ LD - X, & be the
invariant subspace of A corresponding to the A, with dim(F)=m,, i=1, 3, -, r. If
we set @’4=Q X, i=1,2, -, r, and - o

2={Q= (¢, @, - Qr):gi(Qij=§:: 1=1, +, 'r}l'
I[l]It K(Q) _'22 U,q} ’ _. . (4 9)

; f=l fu=1
where {crf”},,,i are the singular wmhws of PEQ, in which the P; and Q; satisfy ER(P,) =
@{h SR(Q*E) '%ﬁ i

and

then

PP =00~ I‘?""') ¢=1, 2, --
The Schur decomposition of any dmgenahzable matrix has an imporiant

cha,ractenstm clarified by the following lemma.
Lemma 492. Let Abe an mxXm diagonalizable matrie with Schur decomposttion

UYAU = A+ M=T,- e

* where U is @ unitary matriz;, M is o strictly wpper ‘triangular mmﬁmm (% e., M is an
upper triangular matriz with zeros on its diagonal) and



