APPLICATION OF THE REGULARIZATION METHOD TO THE NUMERICAL SOLUTION OF ABEL'S INTEGRAL EQUATION*

HAO SHOU (郝 寿)

(Hebei Institute of Technology, Tianjin, China)

\$ 1

In the present paper, we shall consider an ill-posed problem, the solution of Abel's integral equation with unbounded kernel

$$Az = \int_0^x \frac{z(s)}{(x-s)^a} ds = u(x), \quad (x, s) \in [0, 1] \times [0, 1], \qquad 0 < a < 1, u(0) = 0, \quad (1)$$

where u(x) is a know function in the space $L_2[0, 1]$ and z(s) is the unknown function in the space O[0, 1]. This is an important problem encountered in practice ([1] and [2], Vol. I, 158—160).

It should be pointed out first of all that Abel's integral operator A in equation (1) possesses the properties:

1) The operator A is completely continuous. This is true because

$$||u||_{L_{\bullet}}^{2} = \int_{0}^{1} \left[\int_{0}^{x} \frac{z(s)}{(x-s)^{4}} ds \right]^{2} dx \leq ||z||_{2}^{2} \int_{0}^{1} \left[\int_{0}^{x} (x-s)^{-s} ds \right]^{2} dx = \frac{||z||_{2}^{2}}{(1-a)^{2}(3-2a)},$$

and

$$\begin{aligned} \|u(x+h)-u(x)\|_{L_{a}}^{2} &= \int_{0}^{1} \left[\int_{0}^{x+h} \frac{z(s)}{(x+h-s)^{a}} ds - \int_{0}^{x} \frac{z(s)}{(x-s)^{a}} ds \right]^{2} dx \\ &\leq \|z\|_{c}^{2} \int_{0}^{1} \left[\frac{x^{1-a}-(x+h)^{1-a}+2h^{1-a}}{1-a} \right]^{2} dx \to 0, \ as \ h \to 0. \end{aligned}$$

2) The operator A which maps O[0, 1] onto AO[0, 1] is one-to-one. This follows from the reciprocity formula ([2], Vol. I, 159)

$$z(s) = \frac{\sin \pi a}{\pi} \frac{d}{ds} \int_0^s \frac{u(x)}{(s-x)^{1-a}} dx.$$

Suppose that the element $z_T(s) \in C_1[0, 1]$ is a solution of equation (1) with right-hand member $u(x) = u_T(x) \in AC_1[0, 1]$, i.e.,

$$Az_{\tau} = u_{\tau}$$
.

and requires to be found. However, in computation we often know only the approximate right-hand member $u_s(x)$ rather than the exact one $u_T(x)$, in such a case, we can speak only of finding an approximate solution $z_s(s)$ (i.e., one close to $z_T(s)$). Unfortunately the problem of determining the solution z(s) of equation (1) in the space C[0, 1] from the initial data u(x) in the space $L_2[0, 1]$ is not well-posed on the pair of spaces (C, L_2) in the sense of Hadamard ([3], p. 16). First, it is

^{*} Received February 28, 1984.

obvious that the approximate solution $z_{\delta}(s)$ cannot be defined as the exact solution of the equation $Az=u_{\delta}$ with approximate right-hand member

$$u = u_{\delta}$$

that is, it cannot be determined by

$$z_{\delta} = A^{-1}u_{\delta},$$

since the approximate element u_{δ} may fail to belong to the set AC[0, 1]. Second, even if such a solution z_{δ} does exist, it will not possess the property of stability, since the inverse operator A^{-1} is not continuous. To see this, let us suppose that the approximate right-hand member $u_{\delta}(x)$ has the form

$$u_{\delta}(x) = u_{T}(x) + \delta^{\frac{1-a}{3}} \sin \frac{x}{\delta},$$

then

$$\|u_{\delta}(x)-u_{T}(x)\|_{L_{1}} \leq \delta^{\frac{1-a}{3}},$$

$$z_{\delta}(s) = z_{T}(s) + \frac{\sin \pi a}{\pi} \frac{d}{ds} \int_{0}^{s} \frac{\delta^{\frac{1-a}{3}} \sin \frac{x}{\delta}}{(s-x)^{1-a}} dx.$$

However, the difference between the solutions

$$\|z_{\delta}(s)-z_{T}(s)\|_{o} \ge |z_{\delta}(\delta^{\frac{1+2a}{3a}})-z_{T}(\delta^{\frac{1+2a}{3a}})| \ge \frac{\sin \pi a}{\pi} \frac{1}{2} \delta^{\frac{-(1-a)}{3}}$$

can be made arbitrarily large for sufficiently small values of δ . Thus, the requirements for a well-posed problem are not satisfied. Consequently, the problem (1) is ill-posed.

§ 2

A method of solving ill-posed problems, widely used in computational work is the regularization method. It consists in constructing a regularizing operator. An operator $R(u, \alpha)$ depending on a parameter α is called a regularizing operator for the equation Az=u in a neighborhood of $u=u_T$ if

1) there exists a positive number δ_1 such that the operator $R(u, \alpha)$ is defined for every $\alpha > 0$ and every u in $L_2[0, 1]$ for which

$$||u-u_T||_{L_1} \leq \delta \leq \delta_1$$
.

2) there exists a function $a = a(\delta)$ of δ such that, for every s > 0, there exists a number $\delta(s) \leq \delta_1$ such that the inclusion $u_{\delta} \in L_2[0, 1]$ and the inequality

$$\|u_{\delta}-u_{T}\|_{L_{\bullet}} \leqslant \delta(\varepsilon)$$

imply

$$||z_{\alpha}-z_{T}||_{c} \leqslant \varepsilon,$$

where

$$z_{\alpha} = R(u_{\delta}, \alpha(\delta))$$
 ([3], p. 55).

It is obvious that every regularizing operator $R(u_\delta, \alpha(\delta))$ defines a stable method of constructing approximate solutions. Thus, the problem of finding an approximate solution reduces to

- 1) constructing the operator $R(u, \alpha)$, and
- 2) selecting the regularization parameter $\alpha = \alpha(\delta)$ from the discrepancy δ .

The regularizing operator for the Fredholm integral equation of the first kind