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Abstract

Tn this paper the idea of “singularity-separating” presented in [10] is used to solve a two—
dimensional phaseschange problem. A difforence scheme with second-order accuracy eveTywhere,
including the ‘region near the boundary between two phases, is constructed for the above problem.
Through the computation it is shown that the singularity—separating method, whose accuracy is high,
is efficient for two—-dimensional phase—change problem.

1. Introduction |

The Stefan problem, a moving boundary problem for parabolie partial differential
equations, is an important subject studied by many scholars for years. It is often
met with in engineerings and geophysics. For the multi-dimensional Stefan problem
the analytic solution cannot be found except for only a few special cases, and
therefore people devote themseft to finding its numerical solution. At pregent the
difference methods and the finite element methods are the main methods for this
problem™-?, Begides, there is 2 method in which the original equation is transformed
0 2 new equation by using the internal energy function, and then the difference
equations are obtained from the new equation.In the Stefan problem the boundaries
among the media with different phases move with time ¢, and so are called moving
boundaries. On the moving boundaries the solutions are weakly discontinuous and
there exist exothermic processes or endothermic processes. Such a singularity maked
it very difficult to find a numerical method with high accuracy for this problem.

We have presented a new numerical method, the singularity-separaling method
for the Stefan problem a heat conduction problem with phase change. Its main
idea goes as follows: First a curvilinear coordinate transformation is used to turn
the moving phase—change boundaries into fixed boundaries of straight lines under
the new coordinates. Thus the whole region in the new coordinates ig divided into
soveral rectangular subregions by the phase-change boundaries. Then in the
subregions a stable difference scheme is constructed for the heat conduction equation
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under the new coordinates. Since difference equations are constructed in each
subregion, there is no difference across discontinuities in the difference equations.
Finally a simultaneous system composed of the difference equations in these
subregions and the Stefan condition can be solved in order to obtain the solution.

The problem in one dimemnsion has been discussed in [6]. Here we study the
case in two dimensions.

II. Mathematical Formulation of the Problem

The problem with phase change is studied in the region D={(z, ) |[0<z< X,
0<y<H}. The solid phase region is denoted .
as £2,(#) and the liquid phase region ag ‘
Q,(t). Suppose that there iz only one
phase—change boundary, which is denoted

£2,(8) liquid
as I'(t) (see Fig. 1). .
According to the heat conservation ray

law, the heat conduction problems in two
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Here C;—=C;(u), =1, 2, stand for the specific thermal capacities(that ig, the quantity
of heat which per Volume- of substance needs for its temperature to increase by 1°C);
b=k (w), i=1, 2, for the coefficients of heat conduction. The subscripts 1 and 2
stand for the solid region and the liquid region respectively.

Suppose that the equation of the phase—change boundary I'(¢) is y=f(2, ). On
the surface y=f (¢, t), the connective condition can be written as

u~(z, flz, 1), D =u' (s, fz, 1), ) =uy (2.3)
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Here u~ and u* respectively represent the values of ¥ on the lower side and on the
‘ upper side of y=F (2, t), n# stands for the unit
normal, d¢, for the variation of distance along
nn (see Fig. 2), A for the latent heat of phase—
change and u; for the phase-change temperature.

Formula (2.4) is called the Stefan
condition, and can also be written as
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