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§ 1. Introduction

The earliest work for the numerical solution of the RLW equation was dus to
Peregrine™™ and following that Abdulloev, Bogolubsky and Makhankov'™ showed
in their numerical experiments the inelastic interaction of suliton—like waved,
which is different from that of the KDV equation. Later, Olver™*! proved that the
RLW equation possesses only three conserved quantities justifying the inelasticity
of the interactions. A lot of numerical work has been done on this equation and
the interested reader ig referred to Eilbeck and McGuire™ % and Alexander and
Morris™. Recently Wu Hua—mo and Guo Ben-yu"® have proposed a new high
order accurate difference scheme for the KDV-Burgers-RLW equation with a strict
error estimation from which the convergence followed. However, when using finite
difference schemes or finite element schemes we get only implioit methods and the
accuracy of the approximate solution is limited for a fixed scheme, even though the
solution of the RLW equation is very smooth.

On. the other hand, the above deficiency may be remedied by the use of spectral
methods for such problems. In the past several authors (Gazdag®!, Tappert-7,
Schamel and Elgisser"%, Canosa and Gazdag™, Watanabe, Ohishi and Tanaca'®,
Fornberg and Whitham'? and Abe and Inoue'™) have used spectral methods for
such equations and in some recent papers Guo Ben—yu™?%1% has proposed a technigue
to strictly estimate the error of a spectral method for nonlinear partial differential
equations,

This paper is devoted to the use of a speciral method for solving the RL'W
equation. In Sections 2 and 3, we consider the linear and the nonlinear problems
respectively. The corresponding schemes are explicit and the smoother the solution
of the RL'W equation, the more accurate the approximate solutions are. In Section
4, we report the numerical results obtained for the solutions of the linear and the
nonlinear problems and also compare some of thege results with those obtained for
finite difference and finite element schemes.

§ 2. The Linear RLW Equation

Firstly, we consider the linear RL'W equation
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where & and 8 (>>0) are constants and (0, ¢)=Ff (2, $). Let O; denote a positive
constant and

=f(z, 1), O<a<2, 0T,

Ao={U(m, )/ |U(a+y, 1) —Ulx, t) | <C4|y|*, 0<i<T].
We suppose that (1) has a unique classical solution such that |

U /0a® € A,. (2)
Put

U, 1) = 4()/2+3 (A5(2) 008 Fop+ Bi(2) siin lws),
£ (@, 1) =fo()/2+ 3} (f(#)oos Tno -+ e B,

U™ (, 1) = Ao (£) /2 +§"1 (A;(t)008 lww+ B, (t)sin krz),
and - |

L

» f{n) (@, t)=fo(t)/2 +:2:1 (f;(t)ﬁoﬂ Zwm-&-y;(t)aﬁ Irma:) o
Le ﬁ

: R®(U(e, 1)) =U(w, 1) —U"™ (@, 1)
R®(f(e, t))=F (=, 1) —f" (=, 1).

From Jackson’s theorem and Lebésque’s theorem (see [20]), we have

and

| R™(@T/a07) | <Os —mr, for a0, ®

Let v bo the mesh spacing in time and

m(e, kv) == (n(a, by+5) —1(a, b)), k>0,
Also let

w (@, kv) =ai’ (kv)/2 Eﬂ (af® (kt)cos oz +b{" (kv)sin lxx) (4)
1=1
be the approximation of U™ (&, kr) satisfying

(n (%) |
P (@, k) +a 22 (o, k) —8 LT (0, k) = f (3, br), 0<a<2, B0,

U™ (0, k) =u™(2, kv), k>0, _ (5)
Lz, 0) =UP(2), 0<o<2,

i.e.

a0k tw) — o (B7) () 4 ajag) 4 admb® (be) = F0 (hr),  Ohecn,
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| e ) WOED) (1 4oty el () =g ), A<dm,
af” (0) = 4,(0), 0<i<n, '

‘B (0) =B,(0), 1<i<n.




