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Abstract

A class of methods for solving the initial problem for ordinary differential equations are
studied. We develop k-block implicit one-step methods whose nodes in a block are nonequidistant,
When the components of the node vector are related to the zeros of Jacobi’s orthogonal polynomials
PiL(u) or P9 (u), we can derive a subclass of formulas which are 4- or L-stable. Th: order can
be arbitrarily high with 4-or L-stability. We suggest a modified algorithm which avoids the
inversion of a kmXkm matrix during Newton-Raphson iterations, where m is the number of
differential equations. When %==4, for sxample, orly a couple of m Xm matrices have to be inversed,
but four values can be cbtained at one time.

’
§ 1. Introduction

We shall study a class of methods for solving numerically the initial valne
problem for ordinary differential equations. These procedures, termed #-block
implicit one—step methods, advance the numerical solution by a block of £ new
golution values at one time. The nodes of a block can be nonequidistant.

Beoause implicit one—step methods have many merits, such as self-starting,
easy change of steplength, high acouracy and good stability, they have attracted
much attention from a number of authors, e.g., Butcher'®?*, Shampine and
WattsH% ), Williams and Frand de Hoog™®! and Bichart and Picel'!. However, the
block methods with nonequidistant nodes have not received as much attention.
Shampine and Waitts"®™ presented a different approach based on interpolatory
formulas of Newton-Cotes type, whose block methods for sizes k=1, 2, ---, 8 are
A-gtable, but for #=9, 10 are noi. Bichart and Picel™ also had a detailed siudy of
block implicit methods which are stiffly stable at least through order 25.

In this paper, we continue the study of general £-block implicit methods with
nonequidistant nodes. The formulas developed by Shampine and Watis™ are
involved. If the components of a node vector are related to the zeros of Jacobi’s
orthogonal polynomials PP (u) or PitP(u), we can derive a subclags of formulas
which are A— or L—stable for arbitrary sizes #. The A-stable formulas are of order
k-2 and the I—stable formulas are of order £+1 for 2=2.

The fatal defect of the implicit one-step block methods is inversion of large
matrices during Newton—Raphson iterations. In this paper, we present a modified
algorithm, which comes from a 4-block implicit method, and only two ordinary
matrices need t0 be inversed for four new values.
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Some comparative numerical results are presented to show the efficiency of the
modified algorithm.

§ 2. Block Implicit Methods with Nonequidistant Nodes

We shall be interested in obtaining a numerical solution of

y'(@)=f(2, 9), y@)=n o<s<p, (2.1)
where we make the usual assumptions that f is continuous and satisfies
|f(w, ) —f(z, ») | <L|y—¢ (2.2)

and on [a, 81X (—oo, oo) the existence of a unique solution y(w) €C0'[a, B] is
guaranteed. We shall assume that y has continuous derivatives on [a&, 8] of any
order needed rather than make specific differentiability assumptions.

Now, let @,,i=,+oh, where n=0, k, 2k, -+, 0<e<<k, i=1, =+, b—1, og=Fk
and a,%a; when 4%, Define a= (ay, a3, *-, ox) 7 as a node vector. Let ¢; denote the
approximation of y{z;). The formulas we shall study may be put in the form

Yo o= a®+ABF (Vyo) “hfsd, n=0, k, 2k, -, (2.3)

where f:i'=f1mh y!): a’= (1: 1; Tets 1) T; Be= (bﬂ)ﬁxh b= (biﬂ: ™ bkﬂ) T; Y=
Wart, * Yner) Ty £ X no) = (Far1, =+, Joszx)” and the initial value gp=n. Equation
(2.8) represents a system of non-linear equations for the new values which can be
shown to have a unique solution if % ig suitably small. In practice we may have to

presume the existence of a solution.
With the block implict method (2.8) we associate a linear differemce operator

vector ¥ defined by

FY (2; a); k] =Y (@; a) —y.a®— hBY ' (#; a) —hy (2) b, (2.4)
where ¥ (#, a) = (g(@+osh), -+, y{w-+ah))”. Expanding the function 9 (@ +ah)
and its derivative g (¢+a,h) as Taylor series about # and collecting terms in (2.4)
give |

LY (z; a); B] =y (@) co+hy (@) ey e+ hY P (@) cqtee, (2.6)
wheroe ¢q are constant vectors. A simple calculation yields the following formulas
for the constant vectors ¢q in terms of the coefficients @, B and b

o=0,
i Dol (2.6)
L i = T e

where a*= (a3, *--, ai)".

For formula (2.8), we can state a2 convergence theorem.

Theorem 1. Supposs we have a k-block implicit one—step method defined by
(2.8), and let us assume the existence of v and 0<g<¥ such that the linear de¢fference
operator vector ¥ satisfies | L] =O0(h**) and | (L) =0 (R°), where (F); 8 the b-th
component of . Then the method is convergent with global error of order h® where
p=min (v, g+1), that i3 |Ya.—Y (z; @) [=0(&*) for each n=0, &k, 2k, -+, such that.
@, < B, and the method ts said to be of order p.



