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Absatract

The MGR[»] algorithm of Ries, Trottenberg and Winter with v and the Algorithm 2.1 ‘of
Braass are sssentially the same multigrid algorithm for the discrete Poisson equations — A1 = 7. In this
* report we consider the extension to the general diffusion equat;mn —T Pt p-p(m, ) ;p.,::o In

particular, we indicate the proof of the basic result pe —(1+Kk), thus extend:ng the results of Braess

-~ and Ries, Trottenberg and Winter. In addition to this theoretical result we preosent computational
results which indicate that other constant coefficient estimates carry over to this case.

: oy §L Iﬁtroduction '

i

Multigrid methods are proving themselves to be successful tools for the solution
of the algebraio equations associated with the disoretization of elliptic boundary—-
value problems. Nevertheless, it seems we are just begi nmng 10 understand this
powerful idea. Hence there is a need for continued prnbmg, expenmentatmn and

new proofs——less for the sake of proof and more for the sake of in51ght
Let X, be a finite dimensional veotor space of dimension n. Lét A4, be =
non-singular linear operator mappmg X, onto X,. We are ﬁonﬁerned with the

problem |
AU =T. B - { o= BT

Multigrid methods for the solution of (1.1) are haged on the following set of ideas.
Suppose that (1.1) arises from the digdretization of an elliptic boundary value
problem. Then U ig an approximation to a “smooth function” U(z, y). Moreover
U (=, 4) can also be approximated by other approximants {UntE{ X} with X,,
& finite dimensional vector space of dimension m. Thus U can be approximated by
such a U, with m<n. At the same time, most of the classical iterative methods for
the solution of (1.1) converge very slowly. For these methods the spectral radius
of the iteration matrix is of the form o

p~1—c/n. | (1.2)
Indeed, ADI and SOR methods are considered exceptionally good becausse
p~l—c/ T, o (1.3)

1'he same analysis which yields (1.2) also shows that the eigenvectors associated
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with this slow Tate of convergence are converging (as n-> co) to a very smooth
function. That is, these (not all) olassical iterative schemes have the effect of

“smoothing’ the error.
A multigrid method for the Htilutmn of (1. 1) is 'ba.Sed on the followmg entities:

(a) A smoothing operator S: XX, Jeg
8 is an affine operator of the form

Sv=Qo+Kf, (9 o (1.4)
where @ and K are linear operators. And, if u is the unique solution of (1) then u
is a fixed point of 8, i.e.

Su=Gu+ Kf=u. (1.5)
(b)) A subspaca X with - o oo g v

| _' * dim .X',,.=mﬁdlm X,.-n | (1.8)

(o) Tawo linear “omnmmwatm operators:: | |
Ir: X=X s xox o, e ow ow Klad)
."I"" X -*X' R , By (1.3)

(d) A course grid operator: & nonsingular operator > o

; A B e X (1.9)

Having lmted these ingredlsnts let us. deacnbe the mnl ngnd jiterative scheme
for the solutmn of (1.1).

Step 1. Let u® be a ﬁrst guess

Step 2. ,Su“-m, o= f— Au

Step 8. ra=1I7T.

Btep 4. Solve

| Al =1,

. Step 5. w'=u 7+ I

Remark It r.:ught appear . that we -have (merely) described s “two grid”
1terat1ve method. However, true “mulngmd” iterative schemes are deaﬁrlbed by

this outline. The operator A, may require the use of other spaces X . =
In our discussion of these methods we follow a_ basic observation of S

Mﬁcormmk and J. Ruge'; we shoyld focus our attention on the two basic swces
R:=Range I35, s B heee (1.10)
N:=NuHtspace I" Ay ~ 2 (1.11)
A basio result ig T o S |
Theorem 1. Suppose X.=RON awi | - ,
A A zu . o O (1.12)

Sﬂppose A, 18 nongingular, and | | |
| S s =U-a=n+Itw, . (1.3

where - # < - _

' nelN, weclkX,. . : ¥ (1.14)

Then _

N AT N (1.15)



