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Abstract

We propose a deep learning based discontinuous Galerkin method (D2GM) to solve

hyperbolic equations with discontinuous solutions and random uncertainties. The main

computational challenges for such problems include discontinuities of the solutions and the

curse of dimensionality due to uncertainties. Deep learning techniques have been favored for

high-dimensional problems but face difficulties when the solution is not smooth, thus have

so far been mainly used for viscous hyperbolic system that admits only smooth solutions.

We alleviate this difficulty by setting up the loss function using discrete shock capturing

schemes–the discontinous Galerkin method as an example–since the solutions are smooth

in the discrete space. The convergence of D2GM is established via the Lax equivalence

theorem kind of argument. The high-dimensional random space is handled by the Monte-

Carlo method. Such a setup makes the D2GM approximate high-dimensional functions

over the random space with satisfactory accuracy at reasonable cost. The D2GM is found

numerically to be first-order and second-order accurate for (stochastic) linear conservation

law with smooth solutions using piecewise constant and piecewise linear basis functions,

respectively. Numerous examples are given to verify the efficiency and the robustness

of D2GM with the dimensionality of random variables up to 200 for (stochastic) linear

conservation law and (stochastic) Burgers’ equation.
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1. Introduction

Hyperbolic equations with discontinuous solutions in the physical space arise in problems

such as fluid mechanics, combustion, nonlinear acoustics, gas dynamics, and traffic flow [12,26].

One famous example is the compressible Euler equations in gas dynamics, which are the com-

pressible Navier-Stokes equations without viscosity and heat conductivity. The inviscid equa-

tions develop discontinuous solutions, aka shocks, even if one starts from smooth initial data.

Capturing shock waves has been an important subject in scientific computing and has been

very successful [19,26]. Meanwhile, in reality, one may need to consider many sources of uncer-

tainties that can arise in these models. They may be due to the incomplete knowledge of the

model, such as the empirical equations of state or constitutive relations, imprecise measurement

of physical parameters, and inaccurate measurement of boundary and initial data. Therefore, it

is highly desirable to develop computational methods that not only capture the singular profile

of solutions in the physical space but also take random uncertainties into account in the random

space for high-fidelity simulations, along the line of uncertainty quantification (UQ) [23].

Due to the high dimensionality of the problems under study, it is natural to use deep-

learning based approaches, which have been recently proposed for high-dimensional partial

differential equations; see [13–15, 27–29, 31, 32, 35, 36] for examples and references therein. In

these methods, the basic idea is to use a deep neural network (DNN) as the trail function

to approximate the solution based on global optimization of a suitably chosen loss function.

Specifically, the parameters in the DNN are optimized to make the DNN approximation satisfy

the PDE and boundary/initial conditions as accurately as possible. Quite good approximate

solutions are obtained for problems with dimensionality about 100. In all these methods, the loss

function involves the (possibly higher-order) derivatives of the PDE solution, which prevents

their ability to solve problems with discontinuous solutions, such as the (inviscid) Burgers’

equation and the compressible Euler equations, and hence one usually solves viscous problems

in which the solutions are smooth [31].

For hyperbolic equations with discontinuous solutions in the physical space, the discontin-

uous Galerkin (DG) method has been very popular [7–10, 25]. The flexibility of using discon-

tinuous basis functions makes the DG methods capable of solving equations with discontinuous

solutions, such as shock waves. There are many other shock capturing schemes [26] that can

also be used. Here DG is chosen just as one example. For problems with uncertainties, the

stochastic Galerkin (SG) method has been developed for PDEs with random coefficients [2,34],

such as stochastic conservation laws [1, 24, 30], stochastic Hamilton–Jacobi equation [20] and

stochastic wave equation [18, 33]. Compared with the Monte-Carlo (MC) method, the SG

method achieves the spectral accuracy given the sufficient regularity of the PDE solution in

the random space. Even though the SG methods are widely used for stochastic problems, their

computational complexity grows exponentially with respect to the dimensionality of the ran-

dom space. Therefore, when the dimensionality of the random space is large, the MC method

is preferred.

In this work, we propose a deep learning based discontinuous Galerkin method (D2GM) to

solve hyperbolic equations with discontinuous solutions and random uncertainties by combining

the advantages of the DG method and DNNs. A key idea here is that at the discrete level, the

DG method as an example here, the solution is smooth although its continuous counterpart is

not. Thus one can expect that DNN will train better than the ones using AutoGrad in PyTorch

or TensorFlow for time and/or spatial derivatives. We will give a convergence analysis for this
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DNN solution for the case of 1d upwind flux. The idea of taking advantage of the smoothing

effect of the discrete derivatives has been used previously for solving linear wave equations with

discontinuous uncertain coefficients [22]. In the high-dimensional random space we use the MC

method. The proposed method has the following properties:

• By using the DNN representation in both physical and random spaces, the D2GM can

approximate the PDE solution well in high dimensions.

• By using the weak formulation and discontinuous element basis, the D2GM is able to

approximate discontinuous PDE solutions with high accuracy.

• By using the mini-batch sampling with controllable number of samples, the D2GM over-

comes the curse of dimensionality.

The rest of paper is organized as follows. In Section 2, the D2GM is proposed with details

about the DNN, discontinuous element basis, loss function, boundary and initial conditions,

and stochastic gradient descent method. A convergence analysis of D2GM (in 1D and using

the upwind flux) is provided in Section 3. Numerical results with the dimensionality of random

variables up to 200 for (stochastic) linear conservation law and (stochastic) Burgers’ equation

are shown in Section 4. Conclusions are drawn in Section 5.

2. Deep Learning Based Discontinuous Galerkin Method

In this section, we describe the D2GM in details. First, we introduce the construction of

a DNN and build the discontinuous element space using the DNN. The associated loss function

based on the DG method is then proposed with the enforcement of boundary/initial conditions.

The stochastic gradient descent method is employed to find the optimal solution.

2.1. Deep neural network

A DNN contains a series of layers, and each layer has several neurons linked to pre- and

post- layer neurons. Neurons are connected with an affine transformation and a nonlinear

activation function. Such a DNN can be viewed as a nonlinear approximation of the target

function. Precisely, suppose that the DNN has L layers, i.e., an input layer, L − 1 hidden

layers, and an output layer. The input layer takes z0 = (t,x,ω) as the input and the output

layer gives zL = N (t,x,ω) as the output, where t is the temporal variable, x is the spatial

variable, and ω is the random variable. The relation between the l-th layer and the (l + 1)-st

layer (l = 0, 1, . . . , L− 1) is given by

z0 = (t,x,ω) input,

zl+1
k = σl(w

l+1
k · zl + blk), l = 0, 1, . . . , L− 1, 1 ≤ k ≤ ml+1 ,

N (t,x,ω) = wL+1zL output,

(2.1)

where ml is the number of neurons in the l−th layer (mL = 1), σ is the activation function.

Some popular σ includes the rectified linear unit (ReLU) function σ(x) = max(x, 0) and the

sigmoid function σ(x) = 1/(1 + e−x).

Let θ = (θ1, · · · , θJ ) include all wl
k and blk, with J the total number of coefficients in (2.1),

which are to be obtained by minimizing the loss function, in order to match the DNN solution

N (t,x,ω) with the target function u(t,x,ω).
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Fig. 2.1. Illustration of the discontinuous element space.

2.2. Discontinuous element basis

For brevity, we use the unit interval [0, 1] for demonstration. Denote

0 = x0 < x 1
2
< x1 < · · · < xN− 1

2
< xN = 1, (2.2)

where xi+ 1
2
is the middle point of the cell Ii = [xi, xi+1]. We also denote ∆xi = xi+1 − xi and

h = maxi ∆xi. For the uniform mesh, h = ∆xi =
1
N
.

The discontinuous element space is defined as

V 0
h =

{

v : v|Ii ∈ P 0(Ii), 0 ≤ i < N − 1
}

, (2.3)

where P 0 denotes the 0-th order polynomial (constant). We use a DNN to represent the element

in V 0
h as

uh,θ(x) = Nθ(xi+ 1
2
), if xi ≤ x < xi+1, (2.4)

where θ is the parameter set in the DNN to be optimized. This can also be expressed in a way

more like the Galerkin formulation

uh,θ(x) =

N−1
∑

i=0

Nθ(xi+ 1
2
)ϕi(x), ϕi(x) =

{

1, xi ≤ x < xi+1,

0, otherwise.
(2.5)

This procedure is illustrated in Fig. 2.1. This definition can be generalized to the space of

high-order piecewise polynomials

V K
h =

{

v : v|Ii ∈ PK(Ii), 1 ≤ i < N − 1
}

, (2.6)

and any element in the space can be represented by K + 1 DNNs N j
θ , j = 0, . . . ,K, as

uh,θ(x) =
K
∑

j=0

N−1
∑

i=0

N j
θ (xi+ 1

2
)ϕj

i (x), (2.7)

where ϕj
i (x) is the j-th order Legendre polynomial defined in Ii.

In high dimensions, this definition of V 0
h can be easily generalized

uh,θ(x) =
∑

i

Nθ(xi+ 1
2
)ϕi(x), ϕi(x) =

{

1, x ∈ Ii,

0, otherwise,
(2.8)

where x = (x1, x2, · · · , xd) ∈ R
d, i = (i1, i2, · · · , id) is a multi-dimensional index vector,

Ii = [x1
i1
, x1

i1+1) × [x2
i2
, x2

i2+1) × · · · × [xd
id
, xd

id+1), and xi+ 1
2
represents the center of Ii. The

generalization of V k
h to the high-dimensional case can be done in a similar manner.
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2.3. The DG method for hyperbolic conservation law

In this work, we consider the hyperbolic problem with random uncertainties of the following

form:

ut +∇x · f (u) = 0, (2.9)

u(0,x,ω) = u0(x,ω) (2.10)

defined for (t,x,ω) ∈ [0, T ]×D×Ω. Here ω is a high-dimensional random variable representing

uncertainties (or random inputs). The solution u = u(t,x,ω) then depends on ω.

First, we will discrete the equation on spatial space. The semi-discrete DG method for

solving (2.9) is defined as follows: Find the unique solution uh(t,x,ω) ∈ V k
h such that, for any

test function vh ∈ V k
h and all 0 ≤ i < N , one has

d

dt
(uh(t,x,ω), vh(x))Ii − (f(uh(t,x,ω)),∇vh(x))Ii

+ f̂(uh(t,x,ω)) · nvh(x))|∂Ii = 0, (2.11)

where n is the outward unit normal vector along ∂Ii. In 1D, one has

d

dt
(uh(t, x,ω), vh(x))Ii − (f(uh(t, x,ω)), v′h(x))Ii + f̂i+1vh(x

−
i+1)− f̂ivh(x

+
i ) = 0,

where the one-sided limit is defined as

v±(xj) = v(x±
j ) = lim

x→x±

j

v(x),

and the inner product is defined as

(a(t, x,ω), b(x))D =

∫

D

a(t, x,ω) · b(x)dx.

Here f̂i is a numerical flux, which is a single-valued function defined at the interface xi and

in general depends on the values of the numerical solution uh from both sides of the interface.

There are several choices to choose the flux [5] and we use the upwind flux

f̂upwind(u−, u+) =

{

f(u−), if a ≥ 0,

f(u+), if a < 0

for the linear case f(u) = au and Godunov flux

f̂God(u−, u+) =











min
u−≤u≤u+

f(u), if u− < u+,

max
u+≤u≤u−

f(u), if u+ < u+

for the nonlinear case in this work. In high dimensions,

f̂(uh(t,x,ω)) in (f̂(uh(t,x,ω)),nvh(x))|∂Ii

is replaced by the numerical flux on quadrature points.

The semi-discrete formulation (2.11) includes the temporal derivative, which needs to be

discretized. A simple idea is to use the AutoGrad in PyTorch or TensorFlow, which provides
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the temporal derivative automatically by back propagation. This kind of approach is widely used

in solving PDEs with spatial derivatives evolved in the loss function [15,32]. We also introduce

the temporal discretization with steps 0 = t0 < t1 < · · · < tN = T and tn+1 − tn = ∆t, and the

semi-discrete formulation (2.11) becomes
(

uh(tn+1,x,ω)− uh(tn,x,ω)

∆t
, vh(x)

)

Ii

− (f (uh(tn,x,ω)),∇vh(x))Ii

+ (f̂ (uh(t,x,ω)),nvh(x))|∂Ii = 0. (2.12)

In 1D, (2.12) reduces to
(

uh(tn+1, x,ω)− uh(tn, x,ω)

∆t
, vh(x)

)

Ii

− (f(uh(tn, x,ω)), v′h(x))Ii

+ f̂i+1vh(x
−
i+1)− f̂ivh(x

+
i ) = 0. (2.13)

Consider the DG approximation

uh,θ(t, x,ω) =
K
∑

j′=0

N−1
∑

i′=1

N j′

θ (t, xi′+ 1
2
,ω)ϕj′

i′ (x) .

Substituting this into (2.13), choosing vh(x) = ϕj
i (x), and using the orthogonality of the Leg-

endre polynomials, we have

Li,j,n ,
N j

θ (tn+1, xi+ 1
2
,ω)−N j

θ (tn, xi+ 1
2
,ω)

∆t

−

(

f(uh,θ(tn, x,ω)),
dϕj

i (x)

dx

)

Ii

+ f̂i+1ϕ
j
i (x

−
i+1)− f̂iϕ

j
i (x

+
i ) = 0. (2.14)

The second term above can be further simplified when f is specified. For example, for linear

conservation law when f(u) = u,

(

f(uh,θ(tn, x,ω)),
dϕj

i (x)

dx

)

Ii

=

K
∑

k=0

N k
θ (tn, xi+ 1

2
,ω)Cj

k, j = 0, . . . ,K, (2.15)

where Cj
k = (ϕk

i (x),
dϕj

i
(x)

dx )Ii , and for Burgers’ equation when f(u) = 1
2u

2,

(

f(uh,θ(tn, x,ω)),
dϕj

i (x)

dx

)

Ii

=

K
∑

l=0

K
∑

l′=0

N l
θ(tn, xi+ 1

2
,ω)N l′

θ (tn, xi+ 1
2
,ω)Cj

l,l′ ,

where Cj
l,l′ = (ϕl

i(x)ϕ
l′

i (x),
dϕj

i
(x)

dx ). Therefore, the loss function for the DNN is defined as the

residual error of (2.14) in the L2 sense

L(θ) =



h∆t
∑

i,j,n

L2
i,j,n





1
2

, (2.16)
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and the DNN solution Nθ is the solution that minimizes the loss function

min
θ

L(θ). (2.17)

Note that in this model the random variable ω is still continuous and no discretization is

applied in the random space. In numerical experiments, we apply the MC method for the

random variable.

2.4. Boundary and initial conditions

Given u(0,x,ω) = u0(x,ω), one can use

uθ(t,x,ω) = tNθ(t,x,ω) + h(x,ω) (2.18)

to enforce the initial condition.

There are a couple of ways to enforce boundary conditions. The most straightforward way

is to add a penalty term into the loss function. For example, the penalty term for Dirichlet

boundary condition can be expressed as λ‖u − g‖2∂D with the penalty parameter λ. Another

way is to build a DNN that satisfies the boundary condition exactly. For Dirichlet boundary

condition, such a DNN can be constructed as

uθ(t,x,ω) = L(x)Nθ(t,x,ω) +G(x,ω), (2.19)

where L(x) is a distance function that takes 0 on ∂D and is strictly positive inside D, Nθ(t,x)

is the neural network, and G(x) is a smooth extension of g(x) and equals g(x) on ∂D.

In the current work, we can enforce the exact boundary condition on the numerical solution,

i.e., u0 = u(x0) and uN = u(xN ). For periodic boundary condition, we have

u0 = uN−1, uN = u1. (2.20)

This idea works for a grid-based method, and is applicable for all other kinds of boundary

conditions.

2.5. Stochastic gradient descent method

In the DG method, for the high dimensional case, the number of degrees of freedom (dofs)

scales like (1/h)d with d the dimensionality. Therefore, the classical method suffers from the

curse of dimensionality. To overcome this difficulty, we apply the idea of stochastic gradient

descend (SGD) method to evaluate the loss function (2.16) by selecting mesh points randomly

over the index set i, j, k in each iteration with a fixed number of points. For the random variable,

we also apply the MC method with a fixed number of points in the random space. Overall, the

proposed method overcomes the curse of dimenisonality by design.

Here we give a summary of our algorithm. First, a neural network in the form of (2.5) or

(2.7) is used to approximate the solution of the parameterized equation with boundary and

initial conditions (2.9). The optimal set of parameters θ in the neural network is obtained by

minimizing the loss function (2.16). Note that the loss function (2.16) still depends on the

random variable ω continuously. Therefore, in the SGD method, we generate N i.i.d. samples

{ωℓ}Nℓ=1 and minimize




h∆t

N

∑

ℓ

∑

i,j,n

L2
i,j,n(ωℓ)





1
2

.
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The optimal θ is found after the minimization process converges. Afterwards, statistic properties

of the solution can be computed by sampling the random variable in the neural network solution

(2.5) or (2.7) with the Monte Carlo method.

3. Convergence

The convergence of the DNN solution can be established through standard Lax equivalence

theorem kind of augument: consistency and stability imply convergence. We first state some

preparation results which give consistency of the DNN approximation. The main reason that the

DNN approximation (2.1) works is because of the universal approximation theorem, established

in [11, 16].

To make the presentation simple and clear, we consider the deterministic (no ω dependence)

Eq. (2.9) over [0, T ] × [0, 1] with periodic boundary condition and assume that f ∈ C1 and

f ′ > 0, thus the upwind scheme on uniform mesh writes

Un+1
i − Un

i

∆t
+

f(Un
i )− f(Un

i−1)

h
= 0, i = 1, . . . , I, n = 0, . . . , N − 1,

Un
0 = Un

I ,

U0
i = u0(xi).

(3.1)

In this section we will provide a proof of the convergence of the deep neural network approx-

imation, along the line of [21]. Consider a continuous function V (t, x) that satisfies Eq. (3.1)

exactly at grid points

V (t+∆t, x)− V (t, x)

∆t
+

f(V (t, x)) − f(V (t, x− h))

h
= 0,

V (t, 0) = V (t, 1),

V (0, x) = u0(x).

(3.2)

Without loss of generality assume u0(x) ∈ C1(D), with D = [0, 1] (if not the case one can

interpolate through U0
i to get a C1 function V (0, x)). For fixed ∆t and h, clearly (3.2) implies

that V (tn, x) ∈ C1(D) for all n ≥ 0, since f ∈ C1.

From the definition of V clearly V (tn, xi) = Un
i for all n ≥ 0, 1 ≤ i ≤ I.

The loss function (2.16) is now

L(θ) =

(

h∆t

I
∑

i=1

N−1
∑

n=0

∣

∣

∣

∣

Nθ(tn +∆t, xi)−Nθ(tn, xi)

∆t
+

f(Nθ(tn, xi))− f(Nθ(tn, xi − h)

h

∣

∣

∣

∣

2
)

1
2

.

(3.3)

It is obvious that the definition of V depends on the mesh size ∆t and h. Therefore, for

a fixed mesh size, we can apply the universal approximation theory and find a Nθ to approxi-

mate V . Below we adopt the universal approximation theory to our setting.

Theorem 3.1. Let σ be any non-polynomial function in C1(R) and K = [0, T ]×D a compact

set in R
2. Then for any δ > 0, there is a network (2.1) such that

‖V −Nθ‖W 1,∞(K) < δ .
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The above result implies that Nθ depends on the mesh size, and we need to change the

network as the mesh size reduces. The next theorem establishes the consistency of the DNN

approximation.

Theorem 3.2. Assume that the number of layers L = 2 and that the solution V to (3.2) belongs

to C1([0, T ] × [0, 1]), and the activation function σ(x) ∈ C2 is non-polynomial. Then for any

δ > 0, there exists θ and a sequence of the DNN solutions, denoted by Nθ = N (t, x; θ), such

that when the number of parameters is sufficiently large,

|L(θ)| < C(T )δ

for some positive constant C(T ) that may depend on T .

Proof. By (3.2),

In(x, θ) =
Nθ(t+∆t, x; θ) −Nθ(t, x; θ)

∆t
+

f(Nθ(t, x; θ))− f(Nθ(t, x− h; θ)

h

=
[Nθ(t+∆t, x; θ)− V (t+∆t, x)]

∆t
−

[Nθ(t, x; θ)− V (t, x)]

∆t

+
[f(Nθ(t, x; θ)) − f(V (t, x))]

h
−

[f(Nθ(t, x− h; θ))− f(V (t, x− h))]

h
. (3.4)

Given any δ, by Theorem 3.1, we have

‖Nθ(t+∆t, x; θ) − V (t+∆t, x)‖ ≤ δ,

‖Nθ(t, x; θ)− V (t, x)‖ ≤ δ,

‖f(Nθ(t, x; θ))− f(V (t, x))‖ ≤ ‖f ′
u‖δ,

‖f(Nθ(t, x− h; θ))− f(V (t, x − h))‖ ≤ ‖f ′
u‖δ.

(3.5)

Therefore, In(x, θ) can be bounded by δ multiplied by a constant C depending on ∆t, h and

f ′
u, i.e.,

‖In(·, ·, θ)‖l∞ ≤ Cδ . (3.6)

Thus, by the Cauchy-Scharwtz inequality and the boundedness of D, the loss function in (3.3)

can be bounded by δ multiplied by a constant that depends on |D| and T as

L(θ) =

(

h∆t
∑

i,n

|In|
2

)
1
2

≤ Ch IN∆t δ ≤ CTδ (3.7)

since Ih = 1 and n∆t ≤ T . �

The above theorem shows that one can find the parameter θ such that the loss function

convergences to zero. This shows the consistency of the DNN approximation. In fact the

loss function L can be viewed as the truncation error of the DNN approximation, which will

be made clear in the proof of Theorem 3.3. Note that Theorem 3.2 does not imply that N

converges to the solution of the original problem (2.9). Next we prove the convergence of the

DNN approximation, based on the stability argument.

Theorem 3.3. Let θJ be the sequence defined in Theorem 3.2, and let Nθ be the solution to

(2.17) and V be the classical numerical solution to (3.2), then

‖Nθ(tn, ·; θJ )− V (·)‖ ≤ ‖Nθ(0, ·; θ)− u(0, ·)‖+ C(T )δ .
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Consequently,

‖Nθ(tn, xi; θJ)− Un
j ‖ ≤ ‖Nθ(0, ·; θ)− u(0, ·)‖+ C(T )δ for 1 ≤ i ≤ I, n > 0.

Proof. Let

En
i (θ) = Nθ(tn, xi; θJ)− Un

j = Nθ(tn, xi; θJ)− V (tn, xi) = Nn
i − V in.

Clearly, one has

En+1
i − En

i

∆t
+

f(Nn
i )− f(Nn

i−1)

h
−

f(un
i )− f(un

i−1)

h
= In(xi, θ).

Let λ = ∆t/h. Thus

En+1
i = En

i + λ
[

(f(un
i )− f(Nn

i ))− (f(un
i−1)− f(Nn

i−1))
]

+∆tIn(xi, θ)

= En
i + λ

[

−f ′(ηni )E
n
j + f ′(ηni−1)E

n
i−1

]

+∆tIn(xi, θ)

= (1 − λf ′(ηni ))E
n
i + λf ′(ηni−1)E

n
i−1 +∆tIn(xi, θ), (3.8)

where ηnj is a point between Nn
i and un

j . Now taking the l1 norm on the above equality,

assuming

λ supηf
′(η) ≤ 1,

and using the periodic boundary condition, one gets, for all n ≥ 0,

‖En+1‖l1 =
1

I

I
∑

i=1

|En+1
i | ≤

1

I

I
∑

i=1

(1− λf ′(ηni ))|E
n
i |+

1

I

I
∑

i=1

λf ′(ηni−1)|E
n
i−1|+∆t‖In(·, θ)‖l1

≤
1

I

I
∑

i=1

(1− λf ′(ηni ))|E
n
i |+

1

I

I
∑

i=1

λf ′(ηni )|E
n
i |+∆t‖In(·, θ)‖l1

=‖En‖l1 + Cδ∆t. (3.9)

Consequently one has

‖En‖l1 ≤ ‖E0‖l1 + Cδn∆t ≤ ‖E0‖l1 + CTδ (3.10)

for all n such that n∆t ≤ T . Now the convergence N → V as J → ∞ is a consequence of

Theorem 3.2, as long as one trains the initial data E0 well. �

Remark 3.4. It is straightforward to establish the convergence between the numerical solution

V and the exact solution u(t, x) by combining classical numerical analysis of the DG method [8].

This, together with Theorem 3.3, leads to the convergence of the DNN solution Nθ to the

exact solution u(t, x). The proof also implies that both the DNN approximation error and the

discretization error contribute to the approximation error in the D2GM, as demonstrated in

Section 4.

Remark 3.5. The convergence analysis can be generalized to high-dimensional problems with

random variables. In these cases, the MC method is employed to sample the random variables or

a subset of indices for the spatial variables. The sampling error is inversely proportional to the

square root of the number of samples, which attributes to the convergence of the loss function

proven in Theorem 3.2 while the other parts of the convergence proof remains unchanged. In

practice, the sampling error contributes to the total approximation error and is kept small by

using a large number of samples.
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4. Numerical Results

There are four sources of error in the D2GM: the DNN approximation error, the discretiza-

tion error, the optimization error, and the sampling error. A large number of samples are used

so that the sampling error will not affect the observation numerically. For the optimization

error, Adam (Adaptive moment method) is used to find the optimal solution. Therefore, the

first two sources of error dominates the numerical performance of the D2GM. For a DNN with

the large number of parameters, the DNN approximation error is small and the discretization

error dominates. Therefore, for moderate grid size, the convergence rate of D2GM is observed

in the classical sense. When the grid size is small, the DNN approximation contributes more

to the total error and the convergence rate of DG will be lost. The convergence rate will be

recovered if a DNN with more parameters is employed.

4.1. Linear conservation law

First, we use a linear conservation law without random inputs to illustrate our method















2dπut −
d
∑

k=1

uxk = 0, x ∈ [0, 1]d,

u(0, x) = h(x) = sin

(

2π
d
∑

k=1

xk

) (4.1)

with periodic boundary condition, and the exact solution u(t, x) = sin(t + 2π
∑d

k=1 x
k), d =

1, 2, 3. For the first-order method, following (2.18), we construct the numerical solution that

satisfies the initial condition exactly

uh,θ(t,x) =
∑

i

[tNθ(t, xi+ 1
2
) + g(x

i+ 1
2
)]ϕi(x), ϕi(x) =

{

1, x ∈ Ii,

0, otherwise,
(4.2)

and enforce the periodic boundary condition according to (2.20). Following (2.8), we define the

DNN represented coefficients as

Ui(t) = tN (t, xi+ 1
2
) + sin(2πxi+ 1

2
)

in 1D,

Ui1,i2(t) = tN (t, x1
i1+

1
2

, x2
i2+

1
2

) + sin(2π(x1
i1+

1
2

+ x2
i2+

1
2

))

in 2D, and

Ui1,i2,i3(t) = tN (t, x1
i1+

1
2

, , x2
i2+

1
2

, x3
i3+

1
2

) + sin(2π(x1
i1+

1
2

+ x2
i2+

1
2

+ x3
i3+

1
2

))

in 3D, respectively.

For the upwind scheme, in 3D, the loss function for the semi-discrete scheme and the fully

discrete scheme based on the forward Euler method as

Lsemi(θ) =

(

∆th3
∑

ii,i2,i3,j

(

6π∂tUi1,i2,i3(tj)−
Ui1+1,i2,i3(tj)− Ui1,i2,i3(tj)

h

−
Ui1,i2+1,i3(tj)− Ui1,i2,i3(tj)

h
−

Ui1,i2,i3+1(tj)− Ui1,i2,i3(tj)

h

)2
)

1
2

, (4.3)
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and

LFE(θ) =

(

∆th3
∑

ii,i2,i3,j

(

6π
Ui1,i2,i3(tj+1)− Ui1,i2,i3(tj)

∆t
−

Ui1+1,i2,i3(tj)− Ui1,i2,i3(tj)

h

−
Ui1,i2+1,i3(tj)− Ui1,i2,i3(tj)

h
−

Ui1,i2,i3+1(tj)− Ui1,i2,i3(tj)

h

)2
)

1
2

, (4.4)

respectively.

Numerical results of both loss functions are recorded in Table 4.1. The fully discrete method

based on the forward Euler scheme (4.4) shows a better approximation accuracy than the

semi-discrete method using AutoGrad (4.3). This implies that use of discrete derivative may

lead to better results for time-dependent problems. For moderate mesh size h, the first-order

convergence is observed with respect to h. For smaller h, the first-order convergence is lost but

is recovered when a wider network with the width 200 is employed; see Table 4.2 for details.

For the second-order method, the approximate solution in 1D is constructed as

uh,θ(t, x) =
∑

i

[U0
i ϕ

0
i (x) + U1

i ϕ
1
i (x)], (4.5)

where

ϕ0
i (x) =

{

1, x ∈ Ii,

0, otherwise,
(4.6a)

Table 4.1: The averaged L
2 relative error in the last 1000 steps and the convergence rate for the linear

conservation law (4.1) with two loss functions (4.3) and (4.4). A neural network with 4 hidden layers

and two shortcut connections is used and the batchsize is chosen as 10000. In 1D, the network width

is set to be 20 and the total number of parameters is 1341. In 2D, the network width is set to 40 and

the total number of parameters is 5121. In 3D, the network width is set to be 60 and the total number

of parameters is 11341.

d h = ∆t
Fully discrete Semi-discrete

error order error order

1

1/10 2.86 e-01 3.04 e-01

1/20 1.50 e-01 0.93 1.58 e-01 0.93

1/40 7.73 e-02 0.94 8.05 e-02 0.98

1/80 3.95 e-02 0.96 8.39 e-02 -0.05

1/160 2.10 e-02 0.91 7.01 e-02 0.25

1/320 1.72 e-02 0.28 1.44 e-01 -1.04

2

1/10 3.32 e-01 3.43 e-01

1/20 1.72 e-01 0.90 1.81 e-01 0.91

1/40 8.90 e-02 0.95 8.89 e-02 1.03

1/80 4.68 e-02 0.92 6.00 e-02 0.56

1/160 2.57 e-02 0.86 5.40 e-02 0.15

1/320 1.87 e-02 0.45 5.64 e-02 -0.06

3

1/10 3.59 e-01 3.75 e-01

1/20 1.92 e-01 0.90 2.02 e-01 0.89

1/40 9.95 e-02 0.95 1.03 e-01 0.96

1/80 5.20 e-02 0.93 6.94 e-02 0.57

1/160 3.14 e-02 0.72 9.45 e-02 -0.44

1/320 2.09 e-02 0.58 1.16 e-01 -0.30
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Table 4.2: The averaged L
2 relative error in the last 1000 steps and the convergence rate for the linear

conservation law (4.1) using loss function (4.4) and a wider neural network with width 200 in 3D.

h = ∆t error order

1/10 3.64 e-01

1/20 1.92 e-01 0.92

1/40 9.92 e-02 0.95

1/80 5.04 e-02 0.97

1/160 2.54 e-02 0.98

1/320 1.29 e-02 0.97

1/640 6.78 e-03 0.93

1/1280 4.24 e-03 0.67

ϕ1
i (x) =

{

(x− xi+ 1
2
), x ∈ Ii,

0, otherwise,
(4.6b)

U0
i (t) = tN 0

θ0
(t, xi+ 1

2
) + sin(2πxi+ 1

2
), (4.6c)

U1
i (t) = tN 1

θ1
(t, xi+ 1

2
) + 2π cos(2πxi+ 1

2
). (4.6d)

Based on (2.15), the corresponding loss function consists of two contributions

L0(θ0) =

(

∆th
∑

i,j

(

2π
U0
i (tj+1)− U0

i (tj)

∆t
h+ f̂i+ 3

2
− f̂i+ 1

2

)2
)

1
2

,

L1(θ1) =

(

∆th
∑

i,j

(

2π
U1
i (t+∆t)− U1

i (t)

∆t

h3

12
+ hu0 +

h

2
f̂i+ 3

2
+

h

2
f̂i+ 1

2

)2
)

1
2

.

(4.7)

Often L0(θ0) and L1(θ1) are not of the same order of magnitude, which adds additional diffi-

culties to minimize both terms simultaneously

arg min
{θ0,θ1}

L0(θ0) + L1(θ1), (4.8)

where θ0, θ1 are the parameters of neural networks to approximate U0 and U1, respectively. We

use ADMM [3] to optimize U0 and U1. Numerical results are shown in Table 4.3. Compared

Table 4.3: The averaged L
2 relative error in the last 1000 steps and the convergence rate for the 1D

linear conservation law (4.1) solved by the second-order scheme. A neural network with 4 hidden layers

and two shortcut connections is used and the batchsize is chosen as 10000. The network width is set

to be 20 and the total number of parameters is 1341.

h =
√

∆t error order

1/10 1.01 e-01

1/20 3.69 e-02 1.40

1/40 2.24 e-02 0.79

1/80 1.15 e-02 0.95

1/160 1.06 e-02 0.12

1/320 7.81 e-03 0.44
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Table 4.4: The averaged L
2 relative error in the last 1000 steps and the convergence rate for the 1D

linear conservation law (4.1) solved by the second-order scheme. A neural network with 6 hidden layers

and two shortcut connections is used and the batchsize is chosen as 10000. The network width is set

to be 60 and the total number of parameters is 12951.

h =
√

∆t error order

1/10 7.36 e-02

1/20 1.45 e-02 2.34

1/40 2.33 e-03 2.63

1/80 6.31 e-04 1.88

1/160 2.11 e-04 1.57

with Table 4.1, we can find the second-order scheme has a better accuracy when two identical

networks are applied. If a wider and deeper network is employed, then the second-order scheme

is obtained with high accuracy; see Table 4.4.

Results of the first-order and second-order schemes are summarized in Fig. 4.1. The second-

order scheme always has a better accuracy than the first-order scheme. A DNN with more

parameters reduces the DNN approximation error and thus the convergence rate can be obtained

over a larger range of grid size.

10-2 10-1
10-4

10-3

10-2

10-1

100

slope = 1

slope = 2

Fig. 4.1. The averaged error of two schemes for the 1D conservation law with respect to the mesh size

h. V
1
h represents the first-order scheme with the forward Euler method in time and V

2
h represents the

second-order scheme with two DNNs and the forward Euler method in time. Autograd represents the

first-order scheme with AutoGrad in time.

4.2. Burgers’ equation

Consider the Burgers’ equation

ut +

(

u2

2

)

x

= 0 (4.9)
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with initial condition

u(0, x) =

{

1, x < 0,

0, x > 0,
(4.10)

and reflecting boundary condition. The exact solution is discontinuous. The numerical solution

is constructed as

uθ(t, x) =

{

Nθ(t, xi+ 1
2
)ϕi(x), t > 0, x ∈ [xi, xi+1),

u(0, xi+ 1
2
), t = 0,

(4.11)

where ϕi(x) is defined in (2.5). This means that the numerical solution is approximated by

a DNN at any point when t > 0 and uses the exact solution when t = 0. We divide the time

interval (0, T ) into grids and assume that the temporal step size equals the spatial mesh size

for simplicity.

The loss function for the semi-discrete scheme is

Lsemi(θ) =

(

∆th
∑

i,j

(

∂uθ(tj , xi+ 1
2
)

∂t
− f̂God(uθ(tj , x

−
i ), uθ(tj , x

+
i ))

+ f̂God(uθ(tj , x
−
i+1), uθ(tj , x

+
i+1))

)2
)

1
2

, (4.12)

and the loss function for the fully-discrete scheme using the forward Euler method is

LFE(θ) =

(

∑

i,j

(

uθ(tj+1, xi+ 1
2
)− uθ(tj , xi+ 1

2
)

∆t
− f̂God(uθ(tj , x

−
i ), uθ(tj , x

+
i ))

+ f̂God(uθ(tj , x
−
i+1), uθ(tj , x

+
i+1))

)2
)

1
2

, (4.13)

respectively. The error of these two loss functions is shown in Table 4.5. It is observed that the

forward Euler method produces much better results than the autograd method for the Burgers’

equation (4.9) with a non-smooth solution (4.10). The detailed solution profiles are visualized

in Fig. 4.2.

Table 4.5: The averaged L
2 relative error in the last 1000 steps and the convergence rate for the Burgers’

equation (4.9)-(4.10) with two loss functions (4.13) and (4.12). A neural network with 4 hidden layers

and two shortcut connections is used and the batchsize is chosen as 10000. In 1D, the network width

is set to be 20 and the total number of parameters is 1341.

h = ∆t Fully discrete Semi-discrete

1/10 9.87 e-02 3.82 e-01

1/20 4.88 e-02 3.37 e-01

1/40 3.48 e-02 3.03 e-01

1/80 2.58 e-02 3.12 e-01

1/160 1.84 e-02 1.91 e-01

1/320 1.73 e-02 3.86 e-01
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t = 0.25 t = 0.5

t = 0.75 t = 1

Fig. 4.2. 1D solution profiles of the Burgers’ equation (4.9) approximated by the neural network solution

(4.11) with different mesh sizes h.

4.3. Stochastic linear conservation law

Consider the stochastic linear conservation law

2dπut −



1 + exp

(

−
s
∑

j=1

ωj

)2




d
∑

i=1

uxi = 0 (4.14)

with periodic boundary condition and initial condition

u(0,x,ω) = sin

(

2π

d
∑

i=1

xi

)

.

The exact solution of the problem is

u(t,x,ω) = sin







1 + exp

(

−
s
∑

j=1

ωj

)2


 t+ 2π

d
∑

i=1

xi



 .
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Table 4.6: The averaged L
2 relative error in the last 1000 steps and the convergence rate for the

stochastic conservation law (4.14). The neural network used here has 6 hidden layers and 3 shortcut

connections. When s = 50, the network width is 100 and the total number of parameters is 56101.

When s = 100, the network width is 200 and the total number of parameters is 222201. The batchsize

is 200000.

s h = ∆t Expectation Order Variance Order

50 1/40 1.54 e-01 2.13 e-01

50 1/80 7.85 e-02 0.97 1.14 e-01 0.93

50 1/160 3.88 e-02 1.01 5.61 e-02 0.96

50 1/320 1.96 e-02 0.98 3.22 e-02 0.79

100 1/40 1.53 e-01 2.07 e-01

100 1/80 7.83 e-02 0.97 1.12 e-01 0.88

100 1/160 3.93 e-02 0.99 5.82 e-02 0.95

100 1/320 2.01 e-02 0.96 2.93 e-02 0.98

The DNN solution is constructed as

u(t,x,ω) =
∑

i

[tNθ(t,xi+ 1
2
,ω) + g(xi+ 1

2
)]ϕi(x), (4.15)

where ϕi(x) is defined in (2.8). Since the fully discrete scheme works better than the semi-

discrete scheme, we only use the fully discrete scheme with the forward Euler method in time.

The corresponding loss function reads as

LFE(θ) =






∆thd

∑

i,j

(

2π
uθ(tj+1,xi+ 1

2
,ω)− uθ(tj ,xi+ 1

2
,ω)

∆t

−






1 + exp



−
s
∑

j=1

ωj





2






uθ(tj ,xi+1, ω)− uθ(tj ,xi,ω)

h







2





1
2

. (4.16)

Fig. 4.3 plots the expectation and the variance of the solution along the line x1 = x2 = x3 when

d = 3, s = 2, and s = 5. Table 4.6 records the relative L2 errors of the expectation and the

variance for s = 50 and 100 respectively. The first-order accuracy is observed for the stochastic

linear conservation law in both expectation and variance.

4.4. Stochastic Burgers’ equation

Consider the stochastic Burgers’ equation defined as

ut +

(

u2

2

)

x

= 0 (4.17)

with initial condition

u(0, x,ω) =

{

1 + ǫ
∑s

i=1 ω
i, x < 0,

0, x > 0.
(4.18)
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s = 2 s = 2

s = 5 s = 5

Fig. 4.3. Numerical and exact expectations and variances of the solution to the stochastic linear

conservation law (4.14) along the line where x1 = x2 = x3 when d = 3, s = 2 and s = 5 with different

mesh sizes h. When s = 2, the network width is 40 and the total number of parameters is 8441. When

s = 5, the network width is 50 and the total number of parameters is 13211. The batchsize is 200000.

The exact solution is

u(t, x,ω) =











z, x <
z

2
,

0, x >
z

2
,

(4.19)

where z = 1 + ǫ
∑s

i=1 ω
i. The expectation of the solution is

Eω[u(t, x,ω)] =



























1, x <
1− ǫ

2
,

1− 4x2 + 2ǫ+ ǫ2

4ǫ
,

1 + ǫ

2
> x >

1− ǫ

2
,

0, x >
1 + ǫ

2
.

(4.20)
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Table 4.7: Network setups for stochastic equations with different number of random variables.

s Number of hidden layers Network width Number of parameters

2 6 40 8441

5 6 50 13211

10 6 50 13451

50 6 100 55901

100 6 200 221801

200 6 400 883601

Table 4.8: Expectation and variance errors of the proposed method for the stochastic Burgers’ equation

when the MC method is used with the batchsize 10000.

ǫ s h Expectation error (L2) Variance error (L2)

0.25 2 1/40 1.00 e-2 5.42 e-1

0.25 2 1/80 2.98 e-2 6.49 e-1

0.1 5 1/40 1.48 e-2 2.23 e-1

0.1 5 1/80 3.06 e-2 3.22 e-1

0.05 10 1/40 8.16 e-3 2.75 e-1

0.05 10 1/80 2.24 e-2 4.34 e-1

0.01 50 1/40 1.09 e-2 5.78 e-1

0.01 50 1/80 1.90 e-2 5.86 e-1

0.005 100 1/40 5.30 e-3 6.82 e-1

0.005 100 1/80 1.81 e-3 7.89 e-1

0.0025 200 1/40 1.02 e-2 8.96 e-1

0.0025 200 1/80 1.57 e-2 9.92 e-1

The reference variance of the solution is simulated by the MC method. The neural network

setup for different s is listed in Table 4.7.

The approximate solution is constructed as

uθ(t, x,ω) =

{

Nθ(t, xi+ 1
2
,ω)ϕi(x), t > 0, x ∈ (xi, xi+1),

u(0, xi+ 1
2
,ω), t = 0,

(4.21)

and the loss function is the same as (4.13). Expectation and variance errors of the proposed

method are recorded in Tables 4.8 and 4.9 when the batch size is 10000 and 50000, respectively.

The relative L2 error in expectation and variance reduces when the batch size is increased and

the relative L1 error is slightly better than the L2 error. Furthermore, we apply the quasi-

Monte Carlo method [4,6] to approximate the loss function; see Table 4.10. It is found that the

error in this case is smaller than that of the MC method but cannot be further reduced with

smaller mesh sizes. In addition, we apply the multilevel MC method [17] to approximate the

loss function and the numerical result is recorded in Table 4.11. Again, slightly better results

are obtained but the approximation of the variance is not good.



1300 J.R. CHEN, S. JIN AND L.Y. LYU

s = 2, ǫ = 0.25 s = 2, ǫ = 0.25

s = 10, ǫ = 0.05 s = 10, ǫ = 0.05

s = 100, ǫ = 0.005 s = 100, ǫ = 0.005

Fig. 4.4. 1D solution profiles of the stochastic Burgers’ equation with different mesh sizes h.
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Table 4.9: Expectation and variance errors of the proposed method for the stochastic Burgers’ equation

when the MC method is used with the batchsize 50000.

ǫ s h
L

2 error L
1 error

Expectation Variance Expectation Variance

0.25 2 1/40 2.44 e-3 1.27 e-1 1.63 e-03 8.66 e-02

0.25 2 1/80 3.57 e-3 8.82 e-2 2.06 e-03 5.77 e-02

0.25 2 1/160 9.70 e-3 1.14 e-1 4.42 e-03 7.40 e-02

0.25 2 1/320 2.28 e-2 2.21 e-1 1.10 e-02 1.46 e-01

0.1 5 1/40 4.16 e-3 2.30 e-1 2.03 e-03 1.60 e-01

0.1 5 1/80 2.44 e-3 1.24 e-1 1.34 e-03 9.78 e-02

0.1 5 1/160 4.34 e-3 9.16 e-2 2.17 e-03 8.04 e-02

0.1 5 1/320 1.61 e-2 2.21 e-1 8.10 e-03 1.75 e-01

0.05 10 1/40 6.79 e-3 3.37 e-1 2.99 e-03 2.40 e-01

0.05 10 1/80 2.25 e-3 1.86 e-1 1.13 e-03 1.45 e-01

0.05 10 1/160 4.68 e-3 1.27 e-1 2.28 e-03 1.17 e-01

0.05 10 1/320 2.01 e-2 3.36 e-1 8.94 e-03 2.74 e-01

0.01 50 1/40 1.80 e-2 6.42 e-1 5.36 e-03 5.01 e-01

0.01 50 1/80 5.74 e-3 4.04 e-1 1.67 e-03 3.32 e-01

0.01 50 1/160 3.09 e-3 2.69 e-1 1.18 e-03 2.68 e-01

0.01 50 1/320 4.40 e-2 9.12 e-1 1.70 e-02 8.06 e-01

0.005 100 1/40 2.58 e-2 7.53 e-1 6.54 e-03 5.01 e-01

0.005 100 1/80 8.64 e-3 5.25 e-1 2.09 e-03 3.32 e-01

0.005 100 1/160 1.95 e-3 3.76 e-1 7.22 e-04 2.68 e-01

0.005 100 1/320 3.07 e-2 9.47 e-1 5.65 e-03 8.06 e-01

0.0025 200 1/40 2.58 e-2 7.53 e-1 7.56 e-03 7.52 e-01

0.0025 200 1/80 8.64 e-3 5.25 e-1 2.51 e-03 5.68 e-01

0.0025 200 1/160 1.95 e-3 3.76 e-1 8.30 e-04 5.51 e-01

0.0025 200 1/320 3.07 e-2 9.47 e-1 3.52 e-03 9.09 e-01

Table 4.10: Expectation and variance errors of the proposed method for the stochastic Burgers’ equation

when the quasi-Monte Carlo method is used with the batchsize 50000.

ǫ s h
L

2 error L
1 error

Expectation Variance Expectation Variance

0.25 2 1/80 3.88 e-3 8.06 e-2 2.17 e-03 8.06 e-02

0.25 2 1/160 7.78 e-3 8.66 e-3 4.48 e-03 8.66 e-02

0.25 2 1/320 2.68 e-2 2.44 e-1 1.72 e-02 2.44 e-01

0.1 5 1/80 2.39 e-3 1.21 e-1 1.35 e-03 8.78 e-02

0.1 5 1/160 3.18 e-3 7.39 e-2 2.24 e-03 6.29 e-02

0.1 5 1/320 1.70 e-2 2.42 e-1 9.61 e-03 1.92 e-01

0.05 10 1/80 1.80 e-3 1.88 e-1 1.14 e-03 1.45 e-01

0.05 10 1/160 4.23 e-3 1.30 e-1 2.32 e-03 1.22 e-01

0.05 10 1/320 1.47 e-2 2.56 e-1 7.40 e-03 2.27 e-01

0.01 50 1/80 5.88 e-3 4.01 e-1 1.79 e-03 3,25 e-01

0.01 50 1/160 3.61 e-3 2.74 e-1 1.76 e-03 2.74 e-01

0.01 50 1/320 2.19 e-2 5.37 e-1 5.47 e-03 5.04 e-01

0.005 100 1/80 8.79 e-3 5.29 e-1 2.11 e-03 4.43 e-01

0.005 100 1/160 2.78 e-3 3.47 e-1 1.21 e-03 3.49 e-01

0.005 100 1/320 3.01 e-2 8.97 e-1 7.03 e-03 8.20 e-01
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Table 4.11: Expectation and variance errors of the proposed method for the stochastic Burgers’ equation

when the multi-level MC method is used.

ǫ s h
L

2 error L
1 error

Expectation Variance Expectation Variance

0.01 50 1/80 5.82 e-3 4.03 e-1 2.11 e-03 3.27 e-01

0.01 50 1/160 2.37 e-3 2.36 e-1 9.99 e-04 2.18 e-01

0.01 50 1/320 8.37 e-3 2.76 e-1 3.42 e-03 2.80 e-01

0.005 100 1/80 8.82 e-3 5.28 e-1 2.20 e-03 4.41 e-01

0.005 100 1/160 2.07 e-3 3.53 e-1 7.66 e-04 3.51 e-01

0.005 100 1/320 3.03 e-2 8.72 e-1 5.92 e-03 7.96 e-01

5. Conclusions

In this work, based on the weak formulation of PDEs, we propose a deep learning based

discontinuous Galerkin method (D2GM) to solve (stochastic) conservation laws. The main

idea is that at the discrete level, the solution is smoother than that at the continuous level.

By combining the advantages of discontinuous Galerkin method and deep neural networks,

D2GM is able to solve problems with discontinuous solutions over the high-dimensional space.

Convergence of the D2GM is proved under some assumptions. This method is tested for PDEs

with non-smooth solutions over high-dimensional random space. Over some regime of mesh

sizes, D2GM is found to be first-order and second-order accurate in practice. High-order schemes

with discontinuous polynomial basis in space can be designed in the same manner. However,

how to discretize the temporal derivative with high-order accuracy is unclear at the moment.

For example, the leap-frog method is used together with the second-order scheme in space, but

the overall second-order accuracy is not observed for the linear conservation law. Therefore,

it will be of great interests to desgin high-order schemes for shock waves in the framework of

deep neural networks. In summary, the proposed method shows a strong promise for solving

high-dimensional uncertain PDEs with discontinuous solutions.

Acknowledgments. The work of J. Chen was supported by National Key R&D Program of

China under grants 2018YFA0701700, 2018YFA0701701, and NSFC grant 11971021. The work

of S. Jin was supported by the Natural Science Foundation of China under grant 12031013.

References

[1] R. Abgrall and S. Mishra, Uncertainty quantification for hyperbolic systems of conservation laws,

in Handbook of numerical methods for hyperbolic problems, vol. 18 of Handb. Numer. Anal.,

Elsevier/North-Holland, Amsterdam, 2017, 507–544.

[2] H. Bijl, D. Lucor, S. Mishra, and C. Schwab, Uncertainty Quantification in Computational Fluid

Dynamics, Springer, Cham, Switzerland, 2013.

[3] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alter-

nating direction method of multipliers, Now Publishers Inc, 2011.

[4] R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 1998 (1998), 1–49.

[5] G. Chavent and B. Cockburn, The local projection-discontinuous-Galerkin finite element method

for scalar conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, 23 (1989),

565–592.



A Deep Learning Based Discontinuous Galerkin Method 1303

[6] J. Chen, R. Du, P. Li, and L. Lyu, Quasi-Monte Carlo sampling for solving partial differential

equations by deep neural networks, Numerical Mathematics: Theory Methods and Applications,

14 (2021), 377–404.

[7] B. Cockburn, S. Hou, and C.W. Shu, The Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws. IV. the multidimensional case, Mathematics of Com-

putation, 54 (1990), 545–581.

[8] B. Cockburn, G.E. Karniadakis, and C.W. Shu, Discontinuous Galerkin methods: theory, com-

putation and applications, vol. 11, Springer Science & Business Media, 2012.

[9] B. Cockburn, S.Y. Lin, and C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws III: one-dimensional systems, Journal of Computa-

tional Physics, 84 (1989), 90–113.

[10] B. Cockburn and C.W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite

element method for conservation laws. II. general framework, Mathematics of Computation, 52

(1989), 411–435.

[11] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control,

Signals and Systems, 2 (1989), 303–314.

[12] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, 2016.

[13] W.E, Machine Learning and Computational Mathematics, Communications in Computational

Physics, 28 (2020), 1639–1670.

[14] W.E, J. Han, and A. Jentzen. Algorithms for solving high dimensional PDEs: from nonlinear

Monte Carlo to machine learning. Nonlinearity, 35:1 (2021), 278.

[15] W.E and B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving

variational problems, Communications in Mathematics and Statistics, 6 (2018), 1–12.

[16] K.I. Funahashi, On the approximate realization of continuous mappings by neural networks,

Neural networks, 2 (1989), 183–192.

[17] J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method, Numerische

Mathematik, 95 (2003), 527–550.

[18] D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients, Com-

munications in Computational Physics, 3 (2008), 505–518.

[19] J.S. Hesthaven, Numerical methods for conservation laws, vol. 18 of Computational Science &

Engineering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018.

From analysis to algorithms.

[20] J. Hu, S. Jin, and D. Xiu, A stochastic Galerkin method for Hamilton–Jacobi equations with

uncertainty, SIAM Journal on Scientific Computing, 37 (2015), A2246–A2269.

[21] H.J. Hwang, J.W. Jang, H. Jo, and J.Y. Lee, Trend to equilibrium for the kinetic Fokker-Planck

equation via the neural network approach, Journal of Computational Physics, 419 (2020), 109665.

[22] S. Jin and Z. Ma, The discrete stochastic Galerkin method for hyperbolic equations with non-

smooth and random coefficients, Journal of Scientific Computing, 74 (2018), 97–121.

[23] S. Jin and L. Pareschi, Uncertainty Quantification for Hyperbolic and Kinetic Equations, vol. 14,

Springer, 2018.

[24] S. Jin, D. Xiu, and X. Zhu, A well-balanced stochastic Galerkin method for scalar hyperbolic

balance laws with random inputs, Journal of Scientific Computing, 67 (2016), 1198–1218.
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