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FINITE ELEMENT APPROXIMATION TO
AXIAL SYMMETRIC STOKES FLOW~

Yine LoNeg-AN (Rl ®)
(Poking University, Beijing, China)

The finite element method for Stokes flow has been extensively and intensively
studied, and the methed for axial symmetric elliptic problems has also been
touched, see e.g. [1]. The purpose of this paper is to discuss the finite element
method for axial symmetric Stokes flow and prepare for the discussion of the
infinite element approximation to axial symmetric Stokes flow, which will be
published in another paper.

Let us give the classical statement of the three dimensional axial symmetric
Stokes flow. Lot o= (4, #;) €ER? and Q be a2 bounded polygonal region on the half
plane #;>-0. We c?nsider the following problem: to find u(z) = (uy(z), ua(®@)) and

p(w), satisfying

p(—‘?(mi‘?ui)/%—kuﬂmi)} gi =f1, o,
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"'é"‘m';"(m:lul)l o (zyte) =0, €40,

u=0, o€CoQ\{xn=0},
uy =0, 2€oQ2N{x;1=0}.
If Q rotates around the zs—axis, then a three—dimensional region 2 is formed. The

above problem is a deseription of the incompressible viscous flow on Q with low
Reynold’s number, where the constant p>>0 ig videosity, v velocity, p pressure and

f"_—' (f:[, fg) bl}dy force.
We nesd some weighted Sobolev spaces for the above problem. First we define

the seminorm and norm as
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"The corresponding Hilbert spacos are donoted by Zm™(Q), where a={(a1, @),
lexl
D d* __ Then we define the norm as
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If f can be expressed as J=/r1fs, where f.€0~(2), f2 €05 (RY), Ri={2ER? 2,>0},
then we denote fCO(83). The completion of OF(Q2) with respect to the norm
I+ 1,42 is denoted by Z1(Q). We define f € Z% () if and only if € Z1(Q) N 23 (),
and | DD f/g s 0 is bounded.

Lot H(@)=ZU D) x 2 (@), Ho®)={fEH(Q); flunwen=0}, Mo(Q)=
{9620 (Q): J'n mi-pd¢=0}. Wo consider the bilinear form on H(Q) x H(Q):

a(u, v) =v| &3 (Vg Vou+ ity Vo + vy /od)des, u, 0 H (Q), 1)
and the bilinear form on H(£2) x7°(02):
(0, 2)= = | Pl (@) + o (e Jdn, EH(D), pe2(R). (2

Then a weak formulation of the original problem is: to find (u, p) € Ho(2) %
Mo(£2), such that o _ |

a(u, v)+b(o, p)=F(v), Vo€ HoQ), (3)
b(u, g) =0, Vg€ M), (4)
whore |
. i F{w) =Jam1(f1@;+fa%)dw-

We see from definitions (1), (2) that @, b are bounded and

e, v) =v(|us)i, 0+ |u2io),
and we notice that the inequality of Poincaré-Friedrichg type

lua] 8.0+ [ual 3,0 < Oa(u, w)

holds on H,(2). Throughout the paper U will always denote a positive constant.
We have

a(u, u)>as|ulb@, VYu€ H,(Q), - (5)
where ag>0. Moreover, if f,, f,are appropriately regular, then problem (3), (4)
has a unique solution'?, | | | | 4

Now we consider the finite element approximation to problem (3), (4). The
region €2 is divided into finite convex polygonal regions @, k=1, 2, ---, by finite
broken lines. Then each subregion @, is further divided into triangular elements,
and it is assumed that 2, keep fixed in the further refinement process. It is also
assumed that any two elements in £ meet only in the entire common side, or at
only a common vertex, or do not meet at all. The vertices and midpoints of the
sides of all elements are taken as nodes. The element is denoted by ¢, and the side is
denoted by s, where each ¢ is an open set and the end points are not included in s.
We make quadratic polynomial interpolation for u, and p is a constant on ¢. Then
the subspaces H'u;,(ﬁ}, Mo (Q2) of Ho(Q), Mo(Q) are obtained, and so are the
subspaces H,(2,), M »&2) of H{Q), Z°(Q,). |

This kind of triangulation and interpolation causes loss of precision™. To
overcome thig shortcoming, there are several approaches, see e. g. [4], [5]. But for
simplicity, we only consider thig kind of element. | |

The finite element approximation to problem (3), (4) is: to find (w, o) €



