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ON COLLOCATION METHODS FOR SOLVING
THE NEUTRON TRANSPORT EQUATION
IN TWO-DIMENSIONAL PROBLEMS".

Lru CHAO-FEN (fnl #A%) Du MING—EHEHG €2 E)
| Abstract
Collocation methods are eonsidered for ﬂulvmg the time-dependent neutron transport equation in -

two-dimepsional planar geometry. Error estimates and stability are derived.. Finally, some
numerical results are presentad. ;

Introductmn

The neutron transport equatmn is an mtegral—dlﬁ‘arentml equation in which the
differential part is of hyperbolic type. In solving a neutron transport equation™,
can be as simple and convenient as the DSN method™, and the logical consiruction
of the program is generally the same .except that a lower degree linear algebraic
gystemn must be solved on each mesh. In fact, the DSN method is a special fiype of
collocation method. It 'is a weighted residual method and is equivalent o the discrete
Galerkin method. The collocation methods have higher accuracy and faster
conveérgenoce and requires less opera.tmg time to aftain the same accuracy than the
DSN method.

Many suthors have done works of value in u.smg on]loca.hon methodﬂ to solve
partial differential equations, for example[8], [4]. ' '

In this paper, we will use the collocation method to solve the time-dependent
neutron transport equation in the two~dimensional #, y-plane ge'!on:ietry. Here, the
Crank-Niocholson central difference is used to approximate the time variable, and the
discrete ordinates approximation is used for the angular variables. An outline of the
paper is as follows: the calculation method is given in Section 1. In Sections 24,
error estimates and stability are derived. In Bection 5, we disouss econservation of the
method and some relations, such ag its comparison - with the difference method ‘and

the diserete Galerkin method. Finally, in order Yo explain the eﬁ'ecbwanesa of the
methods, some numerical results are presented.

§ 1 Numerlcal Method

For the sake of simplicity we oonmder the m:ttua.l--boundary va:lue problem for
the one-group neutron tmnspoi-t equahon aa fo]fows. -
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(D, 2, Y, y ¥) lgmo=P(, @, y, 11, — v} |y=0,

where the function @ (¢, o, v, m, ») represents the angular flux of neutrons at the
point (3, z, y) and tha a.ngu]ar direction £d= (1, ¥), where

o= sin 6 oo i,
p ==gin § gin ¢,
&=o0080.

Thus the neutron velooity ©*=0"} (see Fig. 1). Here, o, 8 are some nuclear dats,
and are supposed to be block constants, satisfying

0<ap<aa, 0<Bo<B<B:
Denote by B the region in which to solve equation (1.1)

Fig. 3

where Dy: [0, T'], D Dyx Dy, D,: [0, Z'], Dy: [0, Y], D,, is the unit disk in the
(@, v)-plane: pu?+12< 1. I' is the boundary.of D. Denote by f the unit vector in
the direction of ouiiward normal to I" (see Flg 2) | el

U2 -8, daa.

An outside source term is denoted by F (t ®, ¢, Ky p) Suppose that &, is conlinuons
on DxD,,. _

We divide the spatla] varmbleﬂ and time mto

| : 0-%<w1<* <im:=1" g B
0==yn<y1< <y;==I"-T -
O=to <ty <looo<lty=T., ¢



