APPLICATION OF THE REGULARIZATION METHOD TO THE NUMERICAL SOLUTION OF ABEL'S INTEGRAL EQUATION (II)*

HAO SHOU (郝 寿)

(Hebei Institute of Technology, Tianjin, China)

§1

The main purpose of this paper is to use the regularization method to solve the following integral equation of the Abel type

$$A_{f}=2\int_{p}^{\infty}\frac{rf(r)}{\sqrt{r^{2}-p^{2}}}dr=g(p), \qquad (1)$$

which is of great importance in many applications (11).

Suppose that the function $f_T(r)$ having a continuous first derivative and compact support [0, T] is a solution of equation (1) with right-hand side $g_T(p)$, i.e.,

$$A_{f_{\mathbf{r}}} = 2 \int_{\mathbf{r}}^{T} \frac{rf(r)}{\sqrt{r^2 - p^2}} dr = g_{\mathbf{r}}(p)$$

and is yet to be found.

There are two cases to be considered:

Case I. The position of the right end point of the compact support [0, T] is given exactly in advance.

Case II. The position is known only approximately.

The problem of solving Abel's integral equation

$$A_{s} = \int_{0}^{x} \frac{z(s)}{(x-s)^{a}} ds = u(x)$$

has been studied in [2]. In Case I in exactly the same way one can easily see that the analogous problem of determining the solution f(r) of the Abel type integral equation (1) in the space C[0, T] from the initial data g(p) in the space $L_2[0, T]$ is not well-posed on the pair of spaces $(C, L_2)([3] p. 16$ and [2]) and that the problem of constructing approximate solutions can be solved in accordance with the method described in [2].

In Case II we are thus forced to adopt a somewhat different approach to solve problem (1) for $f_T(r)$. In the following we shall treat this problem in detail.

§ 2

In Case II because of the ambiguity of the position of the right end point we

^{*} Received April 24, 1985.

prefer to study problem (1) on the pair of spaces (\overline{C}, L_2) , where

$$L_2 = L_2[0, \bar{T}],$$

 $ar{C} = ar{C} [0, \, ar{T}] = \{f(r) : f(r) \text{ is continuous on } [0, \, ar{T}] \text{ and has compact}$ support $[0, \, \xi], \, 0 < \xi \le T, \, T < ar{T}\},$

$$||f||_{\mathcal{C}} = \max |f(r)|.$$

The problem of determining the solution f(r) from the initial data g(p), like the problem considered in [2], is not well-posed on (\bar{C}, L_2) . For, in the first place, the set $A\bar{C}$ does not coincide with L_2 . Secondly, the inverse operator A^{-1} is not continuous.

Furthermore, it should be noted that the reciprocity formula for f(r) holds[13]:

$$f(r) = \frac{-1}{\pi r} \frac{d}{dr} \int_{r}^{\infty} \frac{pg(p)}{\sqrt{p^{2} - r^{2}}} dp.$$

Below, following. We shall employ the regularization method for the Abel type equation (1) to construct a regularizing operator that provides a stable method for determining approximate solutions. For this purpose we consider the functional $M^{\alpha}[f, g]$ defined on $C_1[0, T]$:

$$\begin{split} M^{\alpha}[f, \, g] &= \|Af - g\|_{L_{\bullet}}^{2} + \alpha \int_{0}^{T} [f^{2}(r) + f'(r)^{2}] dr \\ &= \int_{0}^{T} \left[2 \int_{p}^{T} \frac{rf(r)}{\sqrt{r^{2} - p^{2}}} dr - g(p) \right]^{2} dp + \alpha \int_{0}^{T} [f^{2}(r) + f'(r)^{2}] dr, \\ \bar{C}_{1} &= \bar{C}_{1}[0, \, \bar{T}] = \{f(r) : f(r) \in \bar{C}, \, f(r) \text{ has a continuous derivative} \}. \end{split}$$

Theorem 1. For every function $g \in L_2$ and every positive parameter α , there exists a unique function $f_{\alpha} \in \overline{C}_1$ for which the functional $M^{\alpha}[f, g]$ attains its greatest lower bound, that is

$$M^{\alpha}[f_{\alpha}, g] = \inf M^{\alpha}[f, g].$$

Proof. 1) This is a variational problem with free boundaries; the left and right end points of the unknown curve $f_{\alpha}(r)$ are on lines r=0 and p=0 respectively. Thus, we obtain after simple calculation the first variation δM^{α} of the functional M^{α} :

$$\delta M^{\alpha} = 4 \int_{0}^{t} \left\{ \int_{0}^{r} \frac{r}{\sqrt{r^{2} - p^{2}}} \left[2 \int_{r}^{t} \frac{tf(t)}{\sqrt{t^{2} - p^{2}}} dt - g(p) \right] dp \right\} h(r) dr$$

$$+ 2\alpha \int_{0}^{t} \left[f(r) - f''(r) \right] h(r) dr + 2\alpha f'(r) h(r) \Big|_{r=0}^{r=t},$$

and hence the function $f_a(r)$ should be determined by the Euler integro-differential equation

$$\alpha L[f] = 4 \int_{0}^{r} \frac{r}{\sqrt{r^{2} - p^{2}}} \left[\int_{p}^{t} \frac{tf(t)}{\sqrt{t^{2} - p^{2}}} dt \right] dp - 2 \int_{0}^{r} \frac{r}{\sqrt{r^{2} - p^{2}}} g(p) dp, \ L[f] = f'' - f \ (2)$$

and the boundary conditions

$$f'(0) = 0, \quad f'(\xi) = 0, \quad f(\xi) = 0.$$
 (3)

2) Under given boundary conditions (3) the associated homogeneous equation

$$\alpha L[f] = 4 \int_{0}^{r} \frac{r}{\sqrt{r^{2} - p^{2}}} \left[\int_{p}^{t} \frac{tf(t)}{\sqrt{t^{2} - p^{2}}} dt \right] dp, \tag{4}$$