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Abstract

This paper discnsses the direct boundary elemént method for parabolic equations in a time-
dependent interval. An optimal estimate of the error in maxzimum norm for the boundary element
collocation scheme is given.

4

§ L . Introduction

Compared with the domain methods such as the finite difference method or the
{inite element method, the boundary element method reduces the dimensions of the
problem by one, so that the amount of computational work can be greatly decreased.
In recent years, therefore, some authors studied its applications to numerical solution
of parabolic equations and moving boundary problems (e.g. [1]—[8]). However,
little work on mathematical analysis of the convergence of the method has been
done. The only published work, to the author’s knowledge, is by K. Onishi ([4]).
Bul, as pointed out by the anthor in [5], his proof is based on a wrong estimate of
matrix norm and thus is incorreci. In [B], the author proved the unniform
convergence of the boundary element method and gave an optimal error estimate in
maximum norm for the one—dimensional heat equation, using the method of matrix
analysis which ig not, however, applicable #0 problems in a two-dimensional or
lime—dependent domain. o

In this paper we give an optimal estimate of the error for the boundary element
collocation scheme for heat eguation in a time-dependeni inferval, using the
theory of operator analysis., The two-dimensional case will be discussed in another

Ppaper.

§ 2. Parabolic Equation .in a Time—depem-ie-nt. I-nterva1

For definiteness, we consider the following heat equation:

) 0<o<8(f), 0<t<T <o, (2.1)
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BCs.
20, )=qu(t), (@), H=0(®), 0<t<T, (2. 5)
1C. u(z, 0) =uo(z), 0<z<8(0) (8(0) -1, >0), (2.8)

where >0 is a constant, ¢,(¢) (=1, 2) are bounded, uo(w) is Lipschilz condinuous,
8 (t) has continuous first derivative 8(#) and is assumed, without loss of generality,

0 be a nondecreasing function of £.

§ 3. Boundary Integral Equation

The fundamental solntion of (2-1) is

» z ¢ 2 |
Let
ou’ w—&) w—&)?
q'(@ & 8 7) = 3§ 4~/:n: ((Ic(t——-r))sfﬂ xp[ ‘ff(t —-?rj]’ f}r, -(3'2)

0. =2{ -2 w0, 05 4, 9 dv+k[ (@ (0, B(); 1 i

+[* w0, & 1, 0ag}, ' (3.38)
50 =2 {1 (S, 0 1, D], (W), 8@ 1, 2

+[7 wo@ w(809), & 1, 0) i}, (8.3b)

The bbunda.ry intégra.l equation corresponding fo (2.1)—(2.3) is ([11)
L u(0, -k "0, 0; 1, DHu(0, ndr+ ¢*(0, §(2), t, Du(S(x), D

~ (40, 8(2), 1, DE@US(E), D=5 5:(0), (3-42)

L u(s(w), -k [Lg' (8@, 0; 1, Du(0, 2)ds
+i[ S0, S@); t, D), v

~[Lws®, 865 t, HIEUE ), Ddr=ta®, (3.4
Dofine the column vectors U () = (wa(f), ua(t))¥ with u(£) =u(0, ¢), va(t)=
w(S(2), t), G(t)=(g:.(t), g2(¢))* and the mairix K(t, T) = (k,—; (¢, T))ﬂ){ﬂ s.1.
ky=0, 1<, <2, 0<t <7 <T; - i B
ka=q"(0, 0; ¢, 7), Icm==u (0, S(=); ¢, ‘E’)S(‘E‘) —g*(0, S(z); ¢, 7),
bamg (58, 0 4, %), _b=a' (O, S@; 6 DB ~¢ (BB, 8@ ),
| Ogrf:tf::T . - (8.5)
Let \=2k. The boundary integral equation can, then, be written in the form



