ON MODIFIED HERMITE-FEJÉR INTERPOLATION OMITTING DERIVATIVES*1)

SUN XIE-HUA (孙燮华)

(Hangzhou University, Hangzhou, China)

§ 1. Introduction

Let us consider the Hermite-Fejér interpolation

$$H_n(f,x) = \sum_{k=1}^n f(x_k) h_{kn}(x), \qquad (1.1)$$

on the interval [-1, 1] for a function $f \in \mathcal{O}[-1, 1]$ where

$$-1 \le x_{nn} < \cdots < x_{1n} \le 1, \quad n=1, 2, \cdots,$$

$$W_n(x) = \prod_{k=1}^n (x-x_{kn}),$$

$$l_{kn}(x) = W_n(x) / [W'_n(x_{kn})(x-x_{kn})], \quad k=1, \dots, n,$$

$$h_{kn}(x) = [1 - W_n''(x_{kn})(x - x_{kn})/W_n'(x_{kn})]l_{kn}^2(x), \quad k = 1, \dots, n.$$

It is well-known that for zeros of Chebyshev polynomial $T_n(x)$

$$x_{kn} = \cos \theta_{kn} = \cos(2k-1)\pi/(2n), \quad k=1, \dots, n,$$
 (1.2)

according to a classical result of L. Fejér^[1] $H_n(f, x)$ converges uniformly to f(x). In 1960, P. Turán suggested that perhaps omission of derivatives at a "few" exceptional points would not damage the convergence property of the modified Hermite-Fejér polynomial $H^*_{\mu(n)}(f,x)$ with the nodes (1.2). In [2],P. Turán proved that $H^*_{\mu(n)}(f,x)$ does not converge uniformly in general. Later, K. Kumar and K. K. Mathur^[3] considered the following question:

Is there any matrix of nodes for which the modified Hermite-Fejér interpolation $H^*_{\mu(n)}(f, x)$ given by

$$H_{\mu(n)}^{*}(f,x) = H_{n}(f,x) + (x-x_{\mu})l_{\mu}^{2}(x)W_{n}^{2}(x_{\mu})\sum_{k=1}^{n}f(x_{k})\frac{W_{n}^{"}(x_{k})}{W_{n}^{2}(x_{k})}, \qquad (1.3)$$

satisfying the properties

$$H_{\mu(n)}^*(f, x_k) = f(x_k), \quad k = 1, \dots, n,$$
 $H_{\mu(n)}^{*\prime}(f, x_k) = 0, \quad 1 \le k \le n, \ k \ne 0,$

converges uniformly to every $f \in \mathcal{O}[-1, 1]$. They claimed an affirmative answer for the interpolation $H^*_{\mu(n)}(f,x)$ constructed on the point-systems

$$\{\cos(2k-1)\pi/(2n+1)\}_{k=1}^{n+1},\tag{1.4}$$

$$\{\cos 2k\pi/(2n+1)\}_{k=0}^{n}, \qquad (1.4)'$$

$$\{\cos(k-1)\pi/(n-1)\}_{k=0}^{n}. \qquad (1.5)$$

$$\{\cos(k-1)\pi/(n-1)\}_{k=0}^{n}.$$
(1.5)

^{*} Received May 15, 1985. The Chinese version was received July 5, 1984.

¹⁾ Projects supported by the Science Fund of the Chinese Academy of Sciences.

But, their result was incorrect. In fact, even $H_{1(n)}^*(f_0, 1)$ with the nodes $\{\cos(2k-1)\pi/(2n+1)\}_{k=1}^{n+1}$ does not converge to $f_0(1)$, where $f_0(x) = x$.

On the other hand, P. Turán⁽²⁾ proved thet uniform convergence of $H^*_{\mu(n)}(f, x)$ with the nodes (1.2) in [-1, 1] holds if and only if

$$\int_{-1}^{1} \frac{xf(x)}{\sqrt{1-x^2}} dx = 0. \tag{1.6}$$

Condition (1.6) is related to f. In the present paper the author considers the following question:

What are the necessary and sufficient conditions which ensure that the uniform convergence of $H^*_{\mu(n)}(f, x)$ still holds for every $f \in C[-1, 1]$ when a derivative out of the points (1.4) and (1.5) is omitted.

§ 2. Main Result

Theorem 2.1. For the interpolation $H^*_{\mu(n)}(f,x)$ constructed on the pointsystem (1.4) uniform convergence to every $f \in C[-1,1]$ holds if and only if

$$n-\mu(n)=O(1)$$
. (2.1)

Proof. Denote by $H_n(f, x)$ the Hermite-Fejér operator based on the nodes $\{\cos(2k-1)\pi/(2n+1)\}_{k=1}^{n+1}$. From (1.3) we have

$$H_{u(n)}^*(f, x) = H_n(f, x) + J_n(x), \qquad (2.2)$$

$$J_n(x) = \frac{(1+x)^2 P_n^{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x))^2}{x-x_\mu} \left[\frac{2}{(2n+1)^2} \sum_{k=1}^n \frac{f(x_k)}{1+x_k} - \frac{2n(n+1)}{3(2n+1)^2} f(-1) \right],$$

where $P_n^{\left(-\frac{1}{2},\frac{1}{2}\right)}(x) = \cos(2n+1)\frac{\theta}{2}\Big/\cos\frac{\theta}{2}(x=\cos\theta)$. To prove (2.1) is necessary, suppose that $H_{\mu(n)}^*(f,x)$ converges uniformly to every $f \in C[-1, 1]$. On using Theorem 1 of [4], i.e., $\lim_{n\to\infty} H_n(f,x) = f(x)$ uniformly for every $f \in C[-1, 1]$, we have that for every $f \in C[-1, 1]$

$$\lim J_n(x)=0$$

holds uniformly. Particularly, when $x^* = \cos \theta^*$, $\theta^* = \theta_{\mu} - \pi/[2(2n+1)]$ and $f(x) = \Omega(1+x)$ where $\Omega(x)$ satisfies the following conditions:

(i)
$$\Omega(x) \in \mathcal{O}[0, 2]$$
 and $\Omega(x)$ is nondecreasing,
(ii) $\Omega(x) \geqslant 0$ $(x \geqslant 0)$ and $\Omega(0) = 0$; (2.3)

noting that

$$\sum_{k=1}^{n} 1/(1+x_k) = n(n+1)/3,$$

we have that

$$\lim_{n\to\infty} J_n(x^*) = \lim_{n\to\infty} \left\{ \frac{\cos^2 \theta^*/2}{\sin \frac{1}{2} (\theta_{\mu} - \theta^*) \sin \frac{1}{2} (\theta_{\mu} + \theta^*)} \cdot \frac{2}{(2n+1)^2} \sum_{k=1}^n \frac{\Omega(1+x_k)}{1+x_k} \right\} = 0$$

(2.4)

holds. From the monotonicity of $\Omega(x)$ we obtain