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Abstract

This paper gives perturbation bounds of some solutions of the classical additive and multiplicative
inverse eigenvalue problems for real symmetric matrices.

§ 1. Problems and Main Results

Throughout this paper we use the followmg notation. SR ig the set of all nxn
real symmetric matrices with zero diagonal elements, and SR1** the set of all nXxn
real symmetrm matrices with unit diagonal elements. R* denotes the set of all
n—dimensional real column vectors. The norm | [; stands for both the vector
1-norm and the matrix 1-norm. The supersoript T is for transpose. For an arbibrary
n X n real symmetric matrix 4 with eigenvalues A;>>--->>A,, the symbol u(4) denotes
the vector (Ay, =+, A,)TER".

The following are the most common inverse eigenvalue problems:

Problem A(4, A). Given A= (a,;) €SRY™ and A= (A1, *-, A)TER", find ¢=
(€1, +*+, a)TER" such that the eigenvalues of .A-+diag (e, *+, 04) 876 Ay, **+, A

Problem M(A4, A). Given a positive definite matrix 4= (ay) € SR?**® and A=
(A1, ==, A TER" with h}0(6=1 o, m}, Ond ¢=(61, *--, 6,)TER" such that the
eigenvalues of diag(ey, «++, ca) 4 are Ay, ==+, A,. |

Problem A is the nlasamal additive inverse eigenvalue problem and Problem M
the multiplicative inverse eigenvalue problem. The solubility and the numbers of
solutions ¢ € R" as well as numerical methods for Problem A and Problem M have
been studied (see [1], [2] [6] and the references contained therein). Nevertheless,
to the best of the author’s knowlédge, the stablllty analysis of the solutions of
Problem A and Problem M is not yet treated, and it is the subject of this paper.

Let

| gi=lanl, j=1, -, n (1.1)

and ; .
Z,={o= (01, cﬂ)f{'e R™ M+t 822C12Ca> = Cpxhn— },
where 8>>0 for Problem A, and A,>s>0 for Problem M. The following theorems
have been proved by Hadeler™.

Theorem H-]1. If A=(ay) EBRG*" and A={(Ay, ++-, A)T CR" satisfy Ag>>Rg>> o
> A and
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A=A >>2max {g;, gisa}, jF=1, -, n—1,
then there exists a unique sclution c= (cq, +++, ¢s)T foo* Problem A(A, &) in 2,, and
-. lﬂ;-h,l <g; 9=1,- | o - (1 2)
Theﬂ:rem H-—2. If A= (m;,) € SRT** gud A= (1.1 ., l.) T E R swmfy A Rhg > ee
> A0 and
Ay —2Age1>20 ma,x{gj, Gizar, J=1, s, n—1,
then there ewists @ unique solut@on e=(cy, * ‘) Ba)® ﬂ:ur Problem M(A, ) in D, and
Jes—24] <higy, G=1, «-, m. (1.8)

On the basis of Hadelor’s theorems we shall prove the follawmg results.
Theorem 1. Let A= (@), A= (a) ESRP™, A= (A, *++, Ap)T, A= (Kg oe, Ru)®
ER". Assume that | |

Ay — Ao >2max{gy, Grsa}, Ay—Ap1>2 mﬂx{.a}, Jie1}, j=1, «-, -1, (1.4)
where g, 48 defined by (1.1), and -
| o gi=2lanl, j=1, -, n (1.5)
Suppese that c= (¢4, -+, ca)TE D, and € = (Cy, *+, Cu)T € D, are the solutions of Preblem
A(A, L) and Pmblem A(Z 3.), respectively, whears - |

g, ={0= (01, **+, CA)TER™ A+82201220.3>+ 202> Ag~ 8}, 8>0.

Then * _
|6 —cla<5- @la~afs+1E-2ly), (1.6)

where .
: ﬂ_ (mlﬂ: ***y Qiny Qag, ***, Qan, **, 'wil—irll}rl' . (17)
E=": (Elﬂj "';; Eiﬂ} Eﬂﬁ: e Eﬂlj e Eﬂ—lrﬂ)ri ' (1'8)
D= max I]JE.K{?L;I‘—.?LH.:L, x;-—-ijq.i}, (1.9)

1-;__1‘-:::_-1 | o< b ;
34=min 3:
t

and |
| Sinmin{minp.;—hI —~2¢,, minli;—-i;[ —2¢}, d=1, «sr, m.
Theoremz Let A= (ay), A=/ (a;) CSR>" A= (}Li, veo, AT, 11}--->?L,>0,
A= (R, o, )T, Ry rre >R >0, Assume that ‘
?u,—l,+1>211 max{g;, ¢;s1}, h;-—hjﬂ}%'{max{g,, giesr, j=1, -, n—1,

| (1.10)

where g; and g; are defined by (1.1) and (1.5), respectively, and
At=max{Ay, As}.

Suppose that e= (04, ++-, )T €D, and ¢ = (¢4, -, cn)TE@;(L}a}!G} are the solutions
of Problem M(A4, A) and Problem M(4, 1), raspectéwely. Then

<H2 @l als+ IR~ ~Ma), PRI ¥

whafre a, @ and D are defined by (1.7)—(1.9), and
z"l:l=:|:3:u'l:l'{;t'l: lﬂ}r

le —eli<



