THE STABILITY ANALYSIS OF THE SOLUTIONS OF INVERSE EIGENVALUE PROBLEMS*

SUN JI-GUANG (孙继广)
(Computing Center, Academia Sinica, Beijing, China)

Abstract

This paper gives perturbation bounds of some solutions of the classical additive and multiplicative inverse eigenvalue problems for real symmetric matrices.

§ 1. Problems and Main Results

Throughout this paper we use the following notation. $S\mathbb{R}_0^{n\times n}$ is the set of all $n\times n$ real symmetric matrices with zero diagonal elements, and $S\mathbb{R}_1^{n\times n}$ the set of all $n\times n$ real symmetric matrices with unit diagonal elements. \mathbb{R}^n denotes the set of all n-dimensional real column vectors. The norm $\|\cdot\|_1$ stands for both the vector 1-norm and the matrix 1-norm. The superscript T is for transpose. For an arbitrary $n\times n$ real symmetric matrix A with eigenvalues $\lambda_1 \geqslant \cdots \geqslant \lambda_n$, the symbol $\mu(A)$ denotes the vector $(\lambda_1, \dots, \lambda_n)^T \in \mathbb{R}^n$.

The following are the most common inverse eigenvalue problems:

Problem $A(A, \lambda)$. Given $A = (a_{ij}) \in S\mathbb{R}_0^{n \times n}$ and $\lambda = (\lambda_1, \dots, \lambda_n)^T \in \mathbb{R}^n$, find $c = (c_1, \dots, c_n)^T \in \mathbb{R}^n$ such that the eigenvalues of $A + \operatorname{diag}(c_1, \dots, c_n)$ are $\lambda_1, \dots, \lambda_n$.

Problem M(A, \lambda). Given a positive definite matrix $A = (a_{ij}) \in S\mathbb{R}_1^{n \times n}$ and $\lambda = (\lambda_1, \dots, \lambda_n)^T \in \mathbb{R}^n$ with $\lambda_i > 0 \ (i = 1, \dots, n)$, find $c = (c_1, \dots, c_n)^T \in \mathbb{R}^n$ such that the eigenvalues of $\operatorname{diag}(c_1, \dots, c_n) A$ are $\lambda_1, \dots, \lambda_n$.

Problem A is the classical additive inverse eigenvalue problem and Problem M the multiplicative inverse eigenvalue problem. The solubility and the numbers of solutions $c \in \mathbb{R}^n$ as well as numerical methods for Problem A and Problem M have been studied (see [1], [2], [6] and the references contained therein). Nevertheless, to the best of the author's knowledge, the stability analysis of the solutions of Problem A and Problem M is not yet treated, and it is the subject of this paper.

Let

$$g_j = \sum_{i=1}^{n} |a_{jk}|, \quad j=1, \dots, n$$
 (1.1)

and

$$\mathcal{D}_{s} = \{c = (c_{1}, \dots, c_{n})^{T} \in \mathbb{R}^{n}: \lambda_{1} + s \geqslant c_{1} \geqslant c_{2} \geqslant \dots \geqslant c_{n} \geqslant \lambda_{n} - s\},$$

where s>0 for Problem A, and $\lambda_n>s>0$ for Problem M. The following theorems have been proved by Hadeler^[2].

Theorem H-1. If $A = (a_{ij}) \in S\mathbb{R}_0^{n \times n}$ and $\lambda = (\lambda_1, \dots, \lambda_n)^T \in \mathbb{R}^n$ satisfy $\lambda_1 > \lambda_2 > \dots > \lambda_n$ and

Received August 5, 1985.

$$\lambda_{j}-\lambda_{j+1}>2\max\{g_{j}, g_{j+1}\}, j=1, \dots, n-1,$$

then there exists a unique solution $c = (c_1, \dots, c_n)^T$ for Problem $A(A, \lambda)$ in \mathcal{D}_{\bullet} , and

$$|c_j-\lambda_j|\leqslant g_j,\quad j=1,\,\cdots,\,n. \tag{1.2}$$

Theorem H-2. If $A = (a_{ij}) \in S\mathbb{R}_1^{n \times n}$ and $\lambda = (\lambda_1, \dots, \lambda_n)^T \in \mathbb{R}^n$ satisfy $\lambda_1 > \lambda_2 > \dots > \lambda_n > 0$ and

$$\lambda_{j} - \lambda_{j+1} > 2\lambda_{1} \max\{g_{j}, g_{j+1}\}, j=1, \dots, n-1,$$

then there exists a unique solution $c = (c_1, \dots, c_n)^T$ for Problem $M(A, \lambda)$ in \mathcal{D}_* , and

$$|c_j-\lambda_j| \leqslant \lambda_1 g_j, \quad j=1, \dots, n. \tag{1.3}$$

On the basis of Hadeler's theorems we shall prove the following results.

Theorem 1. Let $A = (a_{ij})$, $\widetilde{A} = (\widetilde{a}_{ij}) \in S\mathbb{R}_0^{n \times n}$, $\lambda = (\lambda_1, \dots, \lambda_n)^T$, $\widetilde{\lambda} = (\widetilde{\lambda}_1, \dots, \widetilde{\lambda}_n)^T$ $\in \mathbb{R}^n$. Assume that

 $\lambda_{j}-\lambda_{j+1}>2\max\{g_{j}, g_{j+1}\}, \tilde{\lambda}_{j}-\tilde{\lambda}_{j+1}>2\max\{\tilde{g}_{j}, \tilde{g}_{j+1}\}, j=1, \dots, n-1, (1.4)$ where g_{j} is defined by (1.1), and

$$\widetilde{g}_{j} = \sum_{k \neq j} |\widetilde{a}_{jk}|, \quad j = 1, \dots, n.$$

$$(1.5)$$

Suppose that $c = (c_1, \dots, c_n)^T \in \mathcal{D}_s$ and $\tilde{c} = (\tilde{c}_1, \dots, \tilde{c}_n)^T \in \widetilde{\mathcal{D}}_s$ are the solutions of Problem $A(A, \lambda)$ and Problem $A(\widetilde{A}, \widetilde{\lambda})$, respectively, where

$$\widetilde{\mathcal{D}}_{\bullet} = \{ c = (c_1, \dots, c_n)^T \in \mathbb{R}^n : \widetilde{\lambda}_1 + \varepsilon \geqslant c_1 \geqslant c_2 \geqslant \dots \geqslant c_n \geqslant \widetilde{\lambda}_n - \varepsilon \}, \quad \varepsilon > 0.$$

Then

$$\|\tilde{c} - c\|_1 < \frac{D}{\delta_A} (2\|\tilde{a} - a\|_1 + \|\tilde{\lambda} - \lambda\|_1),$$
 (1.6)

where

$$a = (a_{12}, \dots, a_{1n}, a_{28}, \dots, a_{2n}, \dots, a_{n-1,n})^{T},$$
 (1.7)

$$\tilde{a} = (\tilde{a}_{12}, \dots, \tilde{a}_{1n}, \tilde{a}_{23}, \dots, \tilde{a}_{2n}, \dots, \tilde{a}_{n-1,n})^T,$$
 (1.8)

$$D = \max_{1 < j < n-1} \max \{\lambda_j - \lambda_{j+1}, \ \tilde{\lambda}_j - \tilde{\lambda}_{j+1}\}, \tag{1.9}$$

$$\delta_A = \min_i \delta_i'$$

and

$$\delta_i' = \min\{\min_{j \neq i} |\lambda_j - \lambda_i| - 2g_i, \min_{j \neq i} |\tilde{\lambda}_j - \tilde{\lambda}_i| - 2\tilde{g}_i\}, \quad i = 1, \dots, n.$$

Theorem 2. Let $A = (a_{ij})$, $\widetilde{A} = (\widetilde{a}_{ij}) \in S\mathbb{R}_1^{n \times n}$, $\lambda = (\lambda_1, \dots, \lambda_n)^T$, $\lambda_1 > \dots > \lambda_n > 0$, $\widetilde{\lambda} = (\widetilde{\lambda}_1, \dots, \widetilde{\lambda}_n)^T$, $\widetilde{\lambda}_1 > \dots > \widetilde{\lambda}_n > 0$. Assume that

$$\lambda_{j} - \lambda_{j+1} > 2\lambda_{1}^{*} \max\{g_{j}, g_{j+1}\}, \ \lambda_{j} - \lambda_{j+1} > 2\lambda_{1}^{*} \max\{\tilde{g}_{j}, \tilde{g}_{j+1}\}, \quad j=1, \dots, n-1,$$

$$(1.10)$$

where g_i and \tilde{g}_i are defined by (1.1) and (1.5), respectively, and

$$\lambda_1^* = \max\{\lambda_1, \tilde{\lambda}_1\}.$$

Suppose that $c = (c_1, \dots, c_n)^T \in \mathcal{D}_s$ and $\tilde{c} = (\tilde{c}_1, \dots, \tilde{c}_n)^T \in \widetilde{\mathcal{D}}_s(\tilde{\lambda}_n > s > 0)$ are the solutions of Problem $M(A, \lambda)$ and Problem $M(\tilde{A}, \tilde{\lambda})$, respectively. Then

$$\|\tilde{c} - c\|_{1} < \frac{\lambda_{1}^{*}D}{\lambda_{n}^{*}\delta_{M}} (2\lambda_{1}^{*}\|\tilde{a} - a\|_{1} + \|\tilde{\lambda} - \lambda\|_{1}), \tag{1.11}$$

where a, a and D are defined by (1.7)-(1.9), and

$$\lambda_n^* = \min\{\lambda_n, \, \tilde{\lambda}_n\},\,$$