EXTRAPOLATION COMBINED WITH MULTIGRID METHOD FOR SOLVING FINITE ELEMENT EQUATIONS*1)

HUANG HONG-CI (黄鸿总) E WEI-NAN (鄂维南) MU MO (穆 默)
(Computing Center, Academia Sinica, Beijing, China)

Abstract

An algorithm combining the MG method with two types of extrapolation is given for solving finite element equations with any initial triangulation. A high order approximation to the solution of PDEs can be obtained at the cost of order O(N) of computational work.

§ 1. Introduction

Two types of extrapolation are suggested in [1] for solving boundary value problems by successively refining meshes:

Type, 1 for gaining a higher order approximation to the solution of PDEs;

Type 2 for gaining a good initial approximation in iteration.

These extrapolations are based theoretically upon the asymptotic expansion

$$u^{h} = u^{I} + c_{1}h^{\alpha_{1}} + c_{2}h^{\alpha_{2}} + \cdots, \quad 0 < \alpha_{1} < \alpha_{2} < \cdots,$$
 (1)

where u^{b} , u^{I} represent the discrete solution and the interpolation function of the solution of PDEs for linear finite element. It has been known that [2,3]

$$u^{h}(z) = u^{I}(z) + w(z)h^{2} + O(h^{2} \ln h)$$
 (2)

holds if the solution of PDEs is smooth enough. The numerical experiments and some theoretical analysis in [4] show that asymptotic expansions also hold for less regular problems. In order to make the extrapolation of type 1 effective, the discrete solution must be accurate enough and this should cost an order of $O(N \ln N)$ of computational work for ordinary MG methods (N the number of nodes). Now an algorithm combining the MG method with type 2 extrapolation is given and its order of computational work is reduced to O(N).

When we finished the paper, we learned that some authors^{15,61} also worked on the same topic. But their results are limited to special regular domains and special initial partition.

§ 2. Algorithm and Analysis

Let Ω be a plane polygon. A series of nested triangulations of Ω are produced

Received December 4, 1985.

¹⁾ Projects Supported by the Science Fund of the Chinese Academy of Sciences.

as follows: An initial partition Δ_0 divides Ω into a few large triangles. Then, successive midpoint refinements produce a series of partitions Δ_0 , Δ_1 , ..., Δ_k , ... with corresponding mesh sizes h_0 , h_1 , ..., h_k , ... and $h_{k-1}=2h_k$. A series of linear finite element equations,

$$A_k u_k = f_k \tag{3}$$

corresponding to the partition Δ_k , are solved one by one. Now, an algorithm is given as follows.

- 1. For k=0, 1, solve $\tilde{u}_0 = A_0^{-1} f_0$, $\tilde{u}_1 = A_1^{-1} f_1$ directly.
- 2. For $k \ge 2$, take the initial approximation

$$u_{k}^{0} = \Pi(\tilde{u}_{k-2}, \tilde{u}_{k-1}) \tag{4}$$

and then perform MG iteration r times to obtain \tilde{u}_{k} .

3. If \tilde{u}_k is accurate enough according to some stopping criteria such as given in [1], stop and go to do the type 1 extrapolation; otherwise go to step 2.

The MG algorithm is referred to [7]. This paper mainly deals with the initial choice of (4).

Theorem. Let constants c_1 and c_2 satisfy, for $k=2, 3, \cdots$

$$\rho_{k} \leqslant \rho < 1, \tag{5}$$

$$||u_k - II(u_{k-2}, u_{k-1})||_{L_1(\Omega)} \leq c_1 h^{\alpha}, \quad \alpha > 0,$$
 (6)

$$\Pi(u_{k-2}, u_{k-1}) - \Pi(\widetilde{u}_{k-2}, \widetilde{u}_{k-1}) \|_{L_1(\Omega)}$$

$$\leq c_2(\|u_{k-2} - \widetilde{u}_{k-2}\|_{L_2(\Omega)} + \|u_{k-1} - \widetilde{u}_{k-1}\|_{L_2(\Omega)}). \tag{7}$$

Constant ρ_k stands for the convergence factor of the MG iteration on Δ_k in the sense of L_2 -norm. Then, when r makes $2c_2\rho^r<1$,

$$||u_k - \tilde{u}_k||_{L_s(\Omega)} \le c(\rho) h^a, \quad k = 0, 1, 2,$$
 (8)

holds with $c(\rho) = c_1 \rho^r / (1 - c_2 \rho^r)$.

Proof. By induction. For j=0, 1, $u_j=\tilde{u}_j$ and (8) is trivial. Suppose now (8) is true for $j \leq k-1$; then, for j=k,

$$\begin{split} \|u_{k}^{n}-u_{k}\|_{L_{2}(\Omega)} &= \|\Pi\left(\widetilde{u}_{k-2},\ \widetilde{u}_{k-1}\right)-u_{k}\|_{L_{2}(\Omega)} \\ &\leq \|\Pi\left(u_{k-2},\ u_{k-1}\right)-u_{k}\|_{L_{2}(\Omega)} + \|\Pi\left(u_{k-2},\ u_{k-1}\right)-\Pi\left(\widetilde{u}_{k-2},\ \widetilde{u}_{k-1}\right)\|_{L_{2}(\Omega)} \\ &\leq c_{1}h^{\alpha}+c_{2}(\|u_{k-2}-\widetilde{u}_{k-2}\|_{L_{2}(\Omega)} + \|u_{k-1}-\widetilde{u}_{k-1}\|_{L_{2}(\Omega)}) \\ &\leq (c_{1}+2c_{2}c(\rho))h^{\alpha}, \\ \|u_{k}-\widetilde{u}_{k}\|_{L_{2}(\Omega)} \leq \rho^{r}\|u_{k}^{0}-u_{k}\|_{L_{2}(\Omega)} \leq \rho^{r}(c_{1}+2c_{2}c(\rho))h^{\alpha} = c(\rho)h^{\alpha}. \end{split}$$

The proof is thus completed.

The norm in the above theorem can be replaced by other norms as long as the corresponding (5), (6) and (7) hold.

§ 3. The Choice of Initial Approximations

Suppose that

$$u^{h}(z) = u^{1}(z) + w(z)h^{2} + O(h^{2}), z \in \Omega$$

with $\tau > 2$. We show how to define $\Pi(u_{k-2}, u_{k-1})$ such that (6) and (7) hold for $\alpha > 2$.