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Abstract

Soms main results in nondifferentiable optimization are reviewed. In Section 2, we discuss
subgradient methods. Section 3 is about the cutting plane method and the bundle methods are studied
in Section 4. Trust region methods for composite nonsmooth optimization are discussed in Section 3.

§ 1. Introduction

A general nonsmoeth optimization is to seek a point that attaing the smallest
value of a nonsmooth fanction f(«), where f(z) defined on R" is continuous, but
not necessarily differentiable. In other words, we need to solve the problem

min f(z), *ER" (1:1)

A necessary condition for #* to be a solution of (1.1) is that the null vector is
in the subdifferential of f(2) at #*. The definition of the subdifferential can be
found in Olark (1975), and is expressed as (2.6) in the next section.

Methods for solving (1.1), to be discussed in the nexh four sections, are all
iterative. That means, to start calculation, an initial guess for the solution has to be
made. Then at every iteration, a method would give a search direction or a trial
stop. In the first case, some kind of line search techniques are needed to choose a
step—gize o5 >0 in order $0 move the approximate point from the original location
(2%, 82y ) t0 & mew one (@yg1=ax+cud;), where di is the search direction. In the
second case, some kind of tests are needed o judge whether we should accept the trial
step (@41 =y+di) OF take a null step (@u+1=2x)-

In the next section, we present some results of subgradient methods for (1.1).
Most of the research in this area has been done by the Soviet scientists. In Section 3,
wo give a brief introduction to the cutting plane method. Section 4 is about the
pandle methods, with an introduction of the conjugate subgradient method. In
Section B, we congider a class of trust region methods for the so—called composite
optimization problem.

There are also many other methods that will not be discussed here. The readers
ore referred to Blinski and Wolfe (1975), Lemarechal and Mifflin (1978) and

Nurminskii (1982). -
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§ 2. Subgradient Methods

For the moment, agsume that the function f(#) is continuously differentiable.
The steepest descent method for solving (1.1) sets

Tusr=— oV (%), (2.1)
where ay>>0 is a step—length. There are different techniques for choosing o, among
which are the “exact line search” and the “Armljﬂ type search”. The former requires
that

F(on— 0V f(2)) =min f(zy—iVf(a)), (2.2)
and the latter one chooses such ap that satisfy the inequality
f(an— V(@) — f (@) < —c10a| V(e | (2.8)

where ¢; i8 a parameter in (0, 1). For either search technique (2.2) or (2.3), it
can be proved that any accumulation point of {z} is a stationary point of (1.1),
that is, the gradient of f(z) is the null vector.

The subgradient method is a generalization of the steepest descent method (2.1).
At every itergtion, it lets

D p1 ™= Ty — O, (2.4)
where g, is any subgradient of f(z) at the point z,. That is, we have
9o € 0f (an), (2.5)

where 9f (a3) is subdifferential of f(z) at @;. The subdifferential df(») of a function
is defined by

of (@) =conv{g ER"|g=1im Vf(x,), mi—>z, Vf(a;) exist, Vf(z;) converge}.
o (2.6)
For more details, see Ulark (1975).
Hence a class of subgradient methods for solving (1.1) can be deseribed below:
Algorithm 2.1 (The Subgradient Method).
Step 0: Given initial vector .
Step 1: C(Qalculate f(a), and obtain a vector g;,Ga f (@)
Step 2: Choose a step-size o3 >0.
Step 3: Set
Tpp1 =Ty — O Jy. | (2 . 7)
Set k=%k-+1 and go to Step 1. |
The difficalty in choosing ay in Algorithm 2.1 is that we can not use the exach

line search or the Armijo type line peareh.
For the exact line search, take the problem of minimizing the 1-norm of the
variable in R? for example, that is, to solve (1.1) with

f(e)=|z];, @€R. (2.8)
Suppose we let the initial vector be 2y=(7; 0)*, where #; is a posilive constant.
For any positive constant #; in (0, 1), we can choose ¢gy=(1 —#3)T. Thus we have

s =[0 ). (2.9)




