ON THE MINIMUM PROPERTY OF THE PSEUDO **-CONDITION NUMBER FOR A LINEAR OPERATOR*

KUANG JIAO-XUN (匡蛟勋)

(Shanghai Teachers University, Shanghai, China)

Abstract

It is well known that the x-condition number of a linear operator is a measure of ill condition with respect to its generalized inverses and a relative error bound with respect to the generalized inverses of operator T with a small perturbation operator E, namely,

$$\frac{ \left\| \left(T + E \right) + - T + \right\|}{ \left\| T + \right\|} \leqslant \frac{ \varkappa \left(T \right) \frac{\left\| E \right\|}{\left\| T \right\|}}{ 1 - \varkappa \left(T \right) \frac{\left\| E \right\|}{\left\| T \right\|}},$$

where $\varkappa(T) = \|T\| \cdot \|T^+\|$. The problem is whether there exists a positive number $\mu(T)$ independent of E but dependent on T such that the above relative error bound holds and $\mu(T) < \varkappa(T)$.

In this paper, an answer is given to this problem. The main result is

Theorem. Let X, Y be two Banach spaces, T, $E \in B[X, Y]$ and $||E|| \cdot ||T^+|| < 1$. Suppose

$$\frac{\|\langle T\!+\!E\rangle^+\!-\!T^+\|}{\|T^+\|}\!\leqslant\!\!\mu(T)\;\frac{\|E\|}{\|T\|}.$$

Then $\varkappa(T) \leqslant \mu(T)$, where $\mu(T)$ is a positive number independent of E but dependent on T and $(I_Y + ET^+)^{-1}(T + E)$ maps $\mathcal{N}(T)$ into $\mathscr{R}(T)$. This theorem shows that $\varkappa(T)$ is minimum in the above sence.

§ 1. Introduction

In [1], the author showed the minimum property of ω -condition number for a linear operator, and extended the results of [2]. The results of [1] are only related to the relative error bound of an inverse linear operator with a small perturbation operator, or the relative error bound of the a regular solution of linear equations with small perturbation.

In this paper, we will discuss the relative error bound of a generalized inverse of a linear operator from a Banach space to another Banach space and a generalized solution of liear equations whose operator has a small perturbation. In addition, we will show the minimum property of the pseudo \varkappa -condition number. The results are very extensive and the results of [1] and [2] are the obvious corollaries.

§ 2. Generalized Inverses of a Linear Operator in a Banach Space

In general, the letters X, Y denote the Banach space, B[X, Y] is the Banach space consisting of all bounded linear operators from X into Y, $\mathcal{D}(T)$ and $\mathcal{R}(T)$ denote the domain and range of T respectively, and $\mathcal{N}(T)$ denotes the null of T.

^{*} Received August 14, 1985.

We assume that the closed subspace $\mathcal{N}(T)$ of X has a topological complement $\mathcal{N}(T)^{\sigma}$ and the closed subspace $\overline{\mathcal{R}(T)}$ of Y has a topological complement $\overline{\mathcal{R}(T)^{\sigma}}$, namely

$$X = \mathcal{N}(T) \oplus \mathcal{N}(T)^{o}; \quad Y = \overline{\mathcal{R}(T)} \oplus \overline{\mathcal{R}(T)}^{o}.$$

In this case, $\mathcal{N}(T)$ and $\overline{\mathcal{R}(T)}$ are closed, however a closed subspace does not necessarily have a topological complement. A subspace $\mathcal{N}(T)$ $(\overline{\mathcal{R}(T)})$ has a topological complement if and only if there exists a projector P(Q) of X(Y) onto $\mathcal{N}(T)$ $(\overline{\mathcal{R}(T)})$, i.e., $PX = \mathcal{N}(T)$ $(QY = \overline{\mathcal{R}(T)})$, see [7]. Nashed pointed out that if the decompositions

$$X = \mathcal{N}(T) \oplus \mathcal{N}(T)^{o}; Y = \overline{\mathcal{R}(T)} \oplus \overline{\mathcal{R}(T)}^{o}$$

exist, then there exists uniquely the generalized inverse $T^+ \equiv T_{P,Q}^+$ ($T_{P,Q}^+$ implies that the operator T^+ depends on the projectors P and Q) such that

$$\begin{cases}
\mathscr{D}(T^{+}) = \mathscr{R}(T) \oplus \overline{\mathscr{R}(T)}^{c}; \,\, \mathscr{N}(T^{+}) = \overline{\mathscr{R}(T)}^{c}, \\
\mathscr{R}(T^{+}) = \mathscr{N}(T)^{c}; \,\, TT^{+}T = T; \,\, T^{+}TT^{+} = T^{+} \,\, \text{on} \,\, \mathscr{D}(T^{+}), \\
T^{+}T = I - P; \,\, TT^{+} = Q|_{\mathscr{D}(T^{+})},
\end{cases} \tag{1}$$

where $Q|_{\mathscr{D}(T^+)}$ is the restriction of Q on $\mathscr{D}(T^+)$. T^+ is bounded if and only if $\mathscr{R}(T)$ is closed in Y. In this paper, we consider the case that $\mathscr{R}(T)$ is closed; then we have obviously

$$\begin{cases} X = \mathcal{N}(T) \oplus \mathcal{N}(T)^{\circ}; \ Y = \mathcal{R}(T) \oplus \mathcal{R}(T)^{\circ}, \\ \mathcal{D}(T^{+}) = Y; \ \mathcal{N}(T^{+}) = \mathcal{R}(T)^{\circ}, \\ \mathcal{R}(T^{+}) = \mathcal{N}(T)^{\circ}, \end{cases} \tag{2}$$

$$\begin{cases}
TT^{+}T = T; \ T^{+}TT^{+} = T^{+}, \\
T^{+}T = P_{\mathcal{N}(T)^{o}}; \ TT^{+} = P_{\mathcal{R}(T)}.
\end{cases}$$
(3)

From (3) we can obtain easily

$$\begin{cases}
T^{+}P_{\mathscr{R}(T)} = T^{+}; \ P_{\mathscr{N}(T)} \circ T^{+} = T^{+}, \\
TP_{\mathscr{N}(T)} \circ = T; \ P_{\mathscr{R}(T)}T = T.
\end{cases} (4)$$

In the following section, we consider the case that the perturbation S = T + E of T has a generalized inverse and estimate the error bound between S^+ and T^+ . We suppose that $y_0 \in Y$, $y_0 = y_1 + y_2$ and $||y_0|| = 1$ imply $||y_1|| \le 1$.

§ 3. The Minimum Property of the Pseudo *-Condition Number

Lemma 1. Let $T \in B[X, Y]$ and suppose $X = \mathcal{N}(T) \oplus \mathcal{N}(T)^c$ and $Y = \mathcal{R}(T) \oplus \mathcal{R}(T)^c$. Let $T^+_{\mathcal{N}(T)^c, \mathcal{R}(T)^c}$ be the generalized inverses of T with respect to these decompositions. Let $E \in B[X, Y]$ and S = T + E. Suppose

$$||ET^{+}|| < 1 \tag{5}$$

and

$$(I_y+ET^+)^{-1}S$$
 maps $\mathcal{N}(T)$ into $\mathcal{R}(T)$. (6)

Then

$$X = \mathcal{N}(S) \oplus \mathcal{R}(T^+); \quad Y = \mathcal{R}(S) \oplus \mathcal{N}(T^+)$$

and