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§ 1. Introduction

Ludwig, Jones and Holling™ proposed an ordinary differential equmation o
deseribe the budworm density in the forest. Ludwig, Aronson and Weinbergert?
considered the spatial effect of the budworm, by adding a diffusion term in the
original model. They also studied this problem for a region of infinite girip in
detail. Recently, Guo Ben—yu. Mitchell and Sleeman®™! and Guo Ben~yu, Sleeman,
Mitchell™ congidered this problem for circular and rectangular regions respectively
and very precise results were obtained. Gno Ben—yu and Mitchell®™ also studied the
agymptotic behavior and the econvergence of a reaction-diffusion difference scheme
in an infinite strip. |

In this paper we consider the linear and nonlinear reaction—diffusion difference
equations, the exigtence of the positive solution of the steady problem and the
asymptotic behavior of the solution of the unsteady problem. Finally, we prove the.
convergoence of the approximate solution.

§ 2. The Difference Scheme for the Linear Problem

In this section we consider a linear model whose boundary condition means that
the exterior is a lethal environment for the budworm, Assume that £ is a bounded
open domain in B? and Uz, ¢) is the scaled density of the budworm population.
Then U (@, ) satisfies the equation -

%? AT=U, 2€Q,0<i<oo,

Uz, 1) =0, o€aQ, 0<i<co, 2.1)
Uz, 0)=Toe), 2€Q,
where Uy(2) is a given function and Uy(a) =0 on 94Q.
If Us(w) =U,(p) where p=|o| and if Q is a circular domain with the radius 7,
then -
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.aa? FePU=U, 0<p<1, 0<i<00

Ulp, 0)=Uo(p), 0<p<l
1 o 1 ¢
Wltlh 8-32 &ndPﬂ—ap 0 ap-
Let A and 7 be the mesh sizes of the space and time respectively, whers NA=1
N being a positive integer. We define

Qv=A{p/p=h, 2h, -, (N —1)k}

and @ = {2,488, where 82, is the boundary of £2,.

Let n*(p) be the value of the mesh function # at the point p=jk and #=~Fkr, and
n(p), v (p) and nf(p) denote respectively the forword, the backward and the central
difference quotients of n*(p) with respect to p. - Similarly, %¥(o) denotes the forward
difference quotient of 7*(p) with respect to . We define

1 1
Py (p) = —nea(p) g s (P)+
Let 4*(p) %e the approximation to U(p, k7). The Orank-Njicolson scheme for
solving (2.2) is -
u;<p>+--Pmp>+—P-u*ﬂcp)== = (p) o U (p).  pE Oy, k>0,

W (0) =0, u*(1) =0, k>0, _- (2.8)
u(p) =Uo(p), P&
The corresponding steady equation is

{ e Py (p) =‘U(P): pPE< 2, (2 4}
2,{0) =0 2(1)=0. |

§ 3. The Discrete Green Function

To study the behavior of the solution of (2.4), we define the discrete Green
function as -

i ’ 1 ;
: P?}GF(P: P) "'}i‘ﬂ_a(P: P)J PEQM (3.1)
. Gh:p(oj PF) =0.: G}‘ (11 IO!) =0’ ' '
where p’'€ 3, and 8 (p, p) is a Kronecker function.
Lot

G (p) = (Ga(h, ), =, G (N =D)h, )7,
B(Pr) =(O: . 0: 1: ‘;): ':'1 0) ’ Pf=jrh'
(#—1) (N—-1—3"

Then from (3.1) we obfain
BGw(p) =5 3 (0,



