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. Abstract

Many types of nonlinear systems, which can be solved by ordered iterative methods, are discussed .
in unified form in the present paper. Under different iritial conditions, some generalized ordered
iterative methods are given, and the existence and uniquensess of the solution and the cun7ergenca uf

the methods are proved.

5 8 S L Introductmn

" In this paper we conslder nonlmear systems o £
c@(w) =, o€ R, (1.1)
The partial ordering relation in R* will be denoted, as usual, by “<”, that is
pEYyeSnSY; ¢=1,2 < n
Yy =1, 2, ver,

| p(@) =g(@)+h(®)+e . (1.2)
where g, h: R*—R" are isotone and antifone mappings respectively, the problem has
been solved quite satisfactorily, The purposs of thig paper is to generahze the results
in [1]—[4]. & G
SBuppose there are f;: B X B*—>R, such tha_.t
@i(2) =f(Ad@, Bw), d=1,2, -, m - (1.8)

where 4,€ R™* B,C R 0<r, 8<n, fi(.Aim Bg) is isotone in x and antitone in
v when they are compa.rable that is, as <4/, y?y , Ty 'or yﬁm o' <y or y’ <o,
we have

For

- fi(Aw, Ba)<fi(Ad/, By), e:-'=1, 2, -, m,
Heample 1, For (1 2) we leot _
: S, y) =g(x) +h(y)+o,
-‘Pi(m) “‘-‘f i(—A-im Bim) = O (Aim) + fy (-Bim’) +6;,

.ld4='Bi'=IE.R"H' 'fr 1 2
Example 2%, F'OI' P bemg diagonally isotone and off-diagonally aniifone, we

E 33 *fi(-Aim; By) = (y+ (mi—yi)e),
(@) =f,(4d@, Ba),

ie-'b
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R = A L

Aj=of ER""' Bi=T6y, 03, *+*, Gi_1, 6131, ***, 6,)TC RO G==1, 2, oo, m, where 6, ==

[0, -+, 0, 1 0, +--, 0]'Cc R*
Emmpk 3':“-" p(x) =e—q '(») "¢ (x), where ¢ is order convex on & convex sed
DCER 1. e, -

g (ha+ (1~ W) ) <Ag (@) + (1~ 1)g(¥)
whenever &, y€ D, <y or y<z and A€ (0, 1). And if ¢ is G‘—dlﬁ'erentmbla, g (z) >
0, ¢’ (%) is isotone and g(=) =0, then

?l(m) =fi(-‘d-im): é=1, 2: see, 9,
Aj=1I, 3,=0, From

g (@) (z—3)<g(x (—7 —g (@) <g' (@) (z—1), 7<=
we can prove that ¢ is isotone. 4 | -
Most of the functions discussed in [1] (13.2—13.5) can be written in form of

(1 » 3) * o
For simplicity, we suppose A= A4, B=B, ¢=1, 2, :--, », and consider
p(w) =f(Az, Bz)=a. - .4
Clearly (1.4) is equivalent to (1.1). For other case, we can get Hlﬂlll&l' resulta.
We define an n—dimensional inferval vector : -

[z, z] = {ulm-guq:u}
as an order interval, z, T& .R" and define.
N“'{l: 2, NN “'}1
[, 2]1C LY, y] “;!fﬂf"ii <y,
[z, z]/< [g, gjiﬂgtﬁsﬁi‘ﬁéiﬁﬁi and !-H-gi};i“fk
W[_:I:‘_, 7] = (Ei_fii - E'“E“)!
|@] = (2|, |@al, +=, [2a])".
We will use the following lemmas.
Lemmal. ILet A>0 be an nXn matric, and p(A) be the speo#m! radius of the
mabric A, Then
1) Ahasa muwgat@w real e@gmalm oqua-! to its 3930#:‘:53 radius.
- {2) To p(A), there is a corresponding eigenvector w=>0. |
(8) p(A) does not decrease when any entry of A s inoreased.
(4) a>p(4), if and only if al — A i nonsingular and (al— A)"1=0.
(8) If A és an irreducible mairiz, p(A) inoreases when any entry of A inoreases.
This lemma is g conclusion of the theorama about nonnega.twe mstrices developed
by Varge™.
Lemma 2. Lei B=I—w(al—A), A}D, p(A) <a, and 0<w€mm{1/ (1—ay) },

Gy=6; Ae;. Then Bz>0 and p(B) <1.

- Proof. From Lemma 1(4), af ~ A is nonsmgular and. (ol — 4)71>0, Therefore
a—a,>0, =1 2 +« n, and B=I—w(al —4)>0. Since I —B=w(al —A4), (I—B)~*
0. Let A be an e1genva1ua of B, and  be an elgenvector of B corresponding to the
eigenvalue A. Then

|A] || = Az —IBGIQIBI lml =B|a|



