A NOTE ON SIMPLE NON-ZERO SINGULAR VALUES*1)

SUN JI-GUANG (孙继广)

(Computing Center, Academia Sinica, Beijing, China)

Abstract

The technique described in [4] is used to investigate the analyticity and to obtain second order perturbation expansions of simple non-zero singular values of a matrix analytically dependent on several parameters.

The object of this note is to use the technique described in [4] to investigate the analyticity and to obtain second order perturbation expansions of simple non-zero singular values of a matrix analytically dependent on several parameters. The results may be useful for investigating the performance and robustuess of multivariable feedback systems as well as design techniques (see [3] and the references contained therein).

Notation. The symbol $\mathbb{C}^{m\times n}$ denotes the set of complex $m\times n$ matrices and $\mathbb{R}^{m\times n}$ the set of real $m\times n$ matrices, $\mathbb{C}^n=\mathbb{C}^{n\times 1}$ and $\mathbb{R}=\mathbb{R}^1$. The superscript H is for conjugate transpose, and T for transpose. ||x|| denotes the usual Euclidean vector norm of x and |A| denotes the spectral norm of a matrix A.

§ 1. Singular Values of a Complex Matrix

Let $p = (p_1, \dots, p_N)^T$ and $A(p) \in \mathbb{C}^{m \times n}$. We may assume without loss of generality that the parameters p_1, \dots, p_N are real and $m \ge n$ throughout this note.

Let $A = A(p^*)$ for some point $p^* \in \mathbb{R}^N$. Suppose that σ is a singular value of A. Then there exist two unit vectors, $v \in \mathbb{C}^n$ and $u \in \mathbb{C}^m$, such that

$$Av = \sigma u, \quad A^H u = \sigma v.$$

Such v, u will be called unit right and unit left singular vectors of A corresponding to the singular value o.

First, applying the Implicit Function Theorem we prove the following theorem.

Theorem 1.1. Let $p \in \mathbb{R}^n$ and $A(p) \in \mathbb{C}^{m \times n}$. Suppose that Re[A(p)] $\operatorname{Im}[A(p)]$ are real analytic matrix-valued functions of p in some neighbourhood $\mathscr{B}(0)$ of the origin. If σ_1 is a simple non-zero singular value of A(0), $v_1 \in \mathbb{C}^n$ and $u_1 \in \mathbb{C}^m$ are associated unit right and unit left singular vectors, respectively, then

Received November 15, 1986.

¹⁾ The project supported by National Natural Science Foundation of China.

1) there exists a simple singular value $\sigma_1(p)$ of A(p) which is a real analytic function of p in some neighbourhood \mathcal{B}_0 of the origin, and $\sigma_1(0) = \sigma_1$;

2) the unit right singular vector $v_1(p)$ and the unit left singular vector $u_1(p)$ of A(p) corresponding to $\sigma_1(p)$ may be so defined that $\text{Re}[v_1(p)]$, $\text{Im}[v_1(p)]$, $\text{Re}[u_1(p)]$ and $\text{Im}[u_1(p)]$ are real analytic functions of p in \mathcal{B}_0 , $v_1(0) = v_1$ and $u_1(0) = u_1$.

Proof. By hypotheses there exist two unitary matrices

$$U = (u_1, U_2) \in \mathbb{C}^{m \times m}, \quad V = (v_1, V_2) \in \mathbb{C}^{n \times n}$$
 (1.1)

such that

$$U^{H}A(0)V = \Sigma = \begin{pmatrix} \sigma_{1} & 0 \\ 0 & \Sigma_{2} \end{pmatrix}, \qquad \Sigma_{2} = \begin{pmatrix} \sigma_{2} \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^{(m-1)\times(n-1)}, \qquad (1.2)$$

where $\sigma_1, \dots, \sigma_n \ge 0$ and $\sigma_j \ne \sigma_1 > 0$ for $j = 2, \dots, n$. We set

$$\widetilde{A}(p) = V^{H} A(p)^{H} A(p) V = \begin{pmatrix} \widetilde{a}_{11}(p) & \widetilde{a}_{21}(p)^{H} \\ \widetilde{a}_{21}(p) & \widetilde{A}_{22}(p) \end{pmatrix}, \quad \widetilde{a}_{11}(p) \in \mathbb{R}$$
(1.3)

and introduce a vector-valued function

$$f(z, p) = \tilde{a}_{21}(p) - \tilde{a}_{11}(p)z + \tilde{A}_{22}(p)z - z\tilde{a}_{21}(p)^{H}z, \qquad (1.4)$$

where

$$f = (f_1, \dots, f_{n-1})^T$$
, $z = (\zeta_1, \dots, \zeta_{n-1})^T \in \mathbb{C}^{n-1}$, $p \in \mathbb{R}^N$.

Let

$$f_{j} = \varphi_{j} + i\psi_{j}, \quad \zeta_{j} = \xi_{j} + i\eta_{j}, \quad i = \sqrt{-1}, \ j = 1, \ \cdots, \ n-1$$

and

$$x = (\xi_1, \dots, \xi_{n-1})^T, \quad y = (\eta_1, \dots, \eta_{n-1}) \in \mathbb{R}^{n-1}.$$

Obviously, $\varphi_j(x, y, p)$ and $\psi_j(x, y, p)$ $(j=1, \dots, n-1)$ are real analytic functions of real variables $x, y \in \mathbb{R}^{n-1}$ and $p \in \mathcal{B}(0)$, and the functions satisfy

$$\varphi_j(0, 0, 0) = 0, \quad \psi_j(0, 0, 0) = 0, \quad j = 1, \dots, n-1.$$
 (1.5)

Since f_1, \dots, f_{n-1} are complex analytic functions of the complex variables $\zeta_1, \dots, \zeta_{n-1}$ for any $p \in \mathcal{B}(0)$, we have ([1, p. 39, Theorem 8])

$$\det \frac{\partial(\varphi_1, \dots, \varphi_{n-1}, \psi_1, \dots, \psi_{n-1})}{\partial(\xi_1, \dots, \xi_{n-1}, \eta_1, \dots, \eta_{n-1})} = \left|\det \frac{\partial(f_1, \dots, f_{n-1})}{\partial(\zeta_1, \dots, \zeta_{n-1})}\right|^2.$$

Combining it with

$$\left(\frac{\partial(f_1, \dots, f_{n-1})}{\partial(\zeta_1, \dots, \zeta_{n-1})}\right)_{g=0, p=0} = \widetilde{A}_{23}(0) - \widetilde{a}_{11}(0)I = \Sigma_2^g \Sigma_2 - \sigma_1^2 I$$

we get

$$\det\left(\frac{\partial(\varphi_{1},\,\cdots,\,\varphi_{n-1},\,\psi_{1},\,\cdots,\,\psi_{n-1})}{\partial(\xi_{1},\,\cdots,\,\xi_{n-1},\,\eta_{1},\,\cdots,\,\eta_{n-1})}\right)_{\substack{x=y=0\\ y=0}} \subset \prod_{l=2}^{n} (\sigma_{l}^{2}-\sigma_{1}^{2})^{2} \neq 0.$$

Hence by the Implicit Function Theorem (see [2, p. 277] or [4, Theorem 1.2]) the system of equations