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Abstract

The single layer heat potential operator, K , arises in the solution of initial-
boundary value problems for the heat equation using boundary integral meth-
ods. ‘In this note we show that X maps a certain anisotropic Sobolev space
isomorphically onto its dual, and, moreover, satisfies the coercivity inequality
< Kyq > cllgl|®>. We thereby establish the well-posedness of the operator
equation K, = f and provide a basis for the analysis of the discretizations.

§1. Introduction

If u(z,t) solves the homogeneous heat equation for = in a smoothly bounded
domain 2 in R® and t > O and vanishes when t = 0, then u may be expressed In

terms of its Cauchy data on I' X R as

t £ [du K
u(z,t) = /; ,/;' [-a—n-(y,s)K(z —y,t— 8) — —a—n-(:.-: —y,t — s)u(y,s)] dyds
where I' = 302 and K (z,t) denotes the fundamental solution to the heat equation,

‘ exp(—|z|*/4t)
K(g_:,t) — (4?!1)3;2 :
0, z€e R3t <O.

re R3,t>0,

Letting = tend to T' and empolying a simp jump relation (5, p. 137] leads to a
mixed Volterra-Fredholm integral equation relating the values of u and du/dn on
. the boundary of the space-time cylinder. Together with given boundary conditions,
this integral equation can be used to solve for the Cauchy data of u and then u
can be determined globally from the representation formula. Thus the solution of



No. 2 Coercivity of the Single Layer Heat Fotential... 101

_-_____—_.——-—l—'-—"—'“_—_

boundary value problems for the heat equation can be reduced to the solution of an
integral equation posed on the boundary of the cylinder. This approach is employed
with increasing frequency for the numerical solution of transient heat conduction
problems | 2, 4, 7, 9, 12]. |
The form of the integral equation te be solved depends on the boundary value
problem considered. If Neumann or Robin conditions are specified for u, then the
unknown Dirichlet data of u is determined by an integral equation of the second
kind. This second kind equation has been studied In depth by Pogorzelski | 10,
11] and his results have recently been applied to the analysis of numerical methods
based on this boundary integral formulation [3]. On the other hand, if u solves a

Dirichlet problem, then the representation formula leads to an integral equation of
the first kind of the form

Ko(z,t) = j: ‘/; q(y,8)K(z — y,t — 8)dyds = flz,t), zeTl,t>0, (1)

where ¢ is the unknown flux and f is known. Our aim in this note to prove a simple
coercivity estimate for this operator which implies the well-posedness of the integral
equation and provides a basis for the analysis of discretizations. It is approprate to
work with the anisotropic Sobolev space H™(S,I) := L*(I,H"(S))n H (1, L*(S))
and its dual H~"~*(S, I)(r,s > 0,5 a smooth submanifold of R2, I an interval.) Cf.
(6, Ch. 4]. Our major result may be stated as follows:

Theorem 1. The single layer heat potential operator K defines an tsomor-
phism from the Hilbert space H‘lf'z'_lﬂ(q,Rg onto its dual. Moreover the coerciv-
ity estimale

< Kgg > 2 f’”qnz—yz,—]{/«; for all g € H"l"z’"lf*(I‘,R.F)

holds for some posilive constant c.

Remarks. 1. Nedelec and Planchard [8] proved a similar result for the elec-
trostatic single layer potential equation for the Laplace equation. It is remarkable
that such a coercivity estimate, typical of elliptic operators, also holds for the single
layer heat potential. 2. R. Brown [1] has recently shown that K maps LT’ x Ry)
isomorphically onto H L1/2(T,R;). In the present context, this may be viewed as
one of many possible regularity results. '

é §2. Factorization of the heat potential
For u in the Schwartz class S(R3I x R) set

e = [ [, 1€P1a( ndEdr
i = [ [, (€ + rDI6(E )P dedr
iy, = [ [ C€R + Pl lae e,



