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1. Introduction

The accurate prediction of projectile aerodynamics is of significant importance
in the early stage of projectile design. e

In recent years, considerable research effort has been focused on the develop-
ment of modern predictive capabilities for determining projectile acrodynamics, and
numerical methods have recently been developed using the 3-D viscous compressible
Navier-Stokes computational technique to compute the flow over slender bodies of
revolution at transonic or supersonic speeds.

Significant improvement has been made by the author in this paper to make
this technique applicable to more complicated flow, by employing finite element
methods, the splitting technique of nonlinear operators and the conjugate gradient
method for nonlinear subproblems, reduction of an exterior problem into a bound-
ary integral equation, and the domain decomposition method. Applications of the
technique are made to a standard shell configuration to establish a benchmark for

the code.

2. The Compressible Navier—-Stokes Equation in a 3—D Noninertial
Coordinate System

We use noninertial curvilinear coordinates {z'} in a rotating reference frame
with angular velocity w. The coordinate axis z = z° is fixed.
The constitution equation and the dissipation function are given by

ri; = —Pgi; + tis, (2.1)



No. 2 Computation of a 3-D Viscous Compressible... 133

tis(w) = — %pug;,- div w + 2p,e:5{w) (2.2)
and |
fo = —%#u( div w)? + 2pypet (w)eg; (w). (2.3)

The equations of continuity, momentum and energy for the gas-dynamics in coordi-
nate system {z'} are given by

% + Vi(ow') =0,

p(é-ati—‘ + w! V' 4+ 267 Fwwy — (w)?r') = Vs + f°,

pCo( &L + wiV;T) + pVjwi = div (kVT) + f. + b,
p=(r—1)CuRT

where h is heat source per unit volume. |

The turbulence models used here are called eddy-viscosity models and are
presented for the Navier-Stokes equation (1.1) by expressing i and p. in terms of
an eddy-viscosity function u.,t.e., |

o = B+ fi, p,zr(%+;—;§), r=C,/Cy, k=Cyu, (2.5)

where p is the molecular viscosity coefficient, p,. the turbulent viscosity coefhicient,
u. the conductivity, & the conductive coeflicient, p, the Prandtl number, and p,r
the turbulent Prandt! number.

The two-equation model employs two additional PDE for variables that are
used to define the eddy-viscosity function { K—¢ equations). The K-« equations are
given by

div (Dl gra.d K)“= fl, div (Dg grad E) = fg

where fi, f2 are turbulent sources, and the turbulent viscosity 18 determined by

o = Copk? [e.

We now discuss the boundary conditions. The exterior domain {Y is decom-
posed into two regions {3, and {12 by a smooth artificial boundary I's. The boundaries
of {1, consist of the body surface I'; and artificial boundary I';. The domain {1z 1s
unbounded. Then, |

w|p, =0, Tir, = 0, w|r, = W, Tt = Tos:

However, we have another way to treat the artificial boundary condition. In fact, .
for a far field from body {1,, the flow can be assumed to be a potential and 1mcom-
pressible, nonviscous flow. Let us consider the momentum equation. Because

w|p, =0 and ¥ (w)".flrg = (_Pgijn.f =+ 2!‘1!*5'1'!',-('-‘”')""".f)Ir':l =



