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Abstract

In this paper we give some sufficient conditions for the convergence of the AOR
method, introduced by Hadjidimos (5], which include the ones from [1], [2], [5], [6], [7],
[9], (10}, [11] and [12] and which show that the necessary condition given in [8] for the
convergence of the AOR method is not valid. We give general conditions for the class
of H-matrices, but they are not always easy to check in practice. Consequently, we
give some more practical conditions concerning some subclasses of H-matrices.

§1. Introduction

Among the various iterative methods which are used for the numerical solution of the

linear system 4

. Az = b,

where A € C™" is a nonsingular matrix with nonzero diagonal entries, and z,b € C" with
z unknown and b known, the completely consistent linear stationary iterative schemes of
first degree play a very important role. Such an iterative method, called the accelerated
overrelaxation (AOR) method, was introduced by Hadjidimos in [5]. Since the introduction
of the AOR method, many properties as well as unmerical results concerning this method
have been given. There are many papers dealing with the linear systems with a matrix
which is strictly diagonally dominant (SDD), irreducible diagonally dominant (IDD), or
generalized diagonally dominant (GDD) is an M- or H- matrix (cf. [1], [5], [6), [9], [10], [11],
[12], {17], [18]). in [2] and |7] some new classes of linear systems have been considered. The
purpose of this paper is: i) to present some further basic results concerning the convergence
of the AOR method when the matrix A is an H-matrix (all of the mentioned classes are
H-matrices), and ii) to give more practical sufficient conditions for the convergence of the
AOR method when the matrix A belongs to some special subclasses of H-matrices.

Let A= D ~T—S be the decomposition of the matrix A into its diagonal, strictly lower
and strictly upper triangular parts, respectively and let w,0 € R,w # 0. The associated
AOR method can be written as

gkt = M, o +d, k= 0,1, --+,2° €C™,

where Mg, = (D ~oT) (1 -w)D + (w — 0)T +wS), d=w(D—oT) 1.

Some special cases of this method are

—— SOR ——y Gauss-Seidel

—— JOR —— Jacobi
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The AOR method has some connection with the extrapolation principle, since it is an
extrapolation of either the Jacobi method (case ¢ = 0} or the SOR method {case o # 0,
where the extrapolation parameter is w /o). This fact and many numerical examples (cf. [1],
[5]) show the superiority of the AOR method. |

§2. Preliminaries
We shall use the following notations:
N={1,2---,n}, N{@E)=N\{s}, 1€ N.

For any matrix A = [a;;] € C™" (= set of all complex n X n matrices) and : € N, a € [0, 1],

we define
Pi(A) = Z jasi, Qi(4) = Z ja i,
JEN(4) JEN({{)
Pia(4) = aR(4) + (1= @)Qi(4), Q}(4) = max |aii),
Q.”(4) = max 3 |az,
J.Etr ;
where r € N and 4, is the set of all choices ¢, = {#,, - -,%,} of different indices from N.

Definition 2.1. A real square mairiz whose off-diagonal elements are all non-positive

13 called L-matriz.
Definition 2.2. A regular L-matriz A for which A=! > 0 13 called M -matriz.

In [3] we have proved the following two theorems.
Theorem 2.1. Let A be an L-matriz, whose diagonal elements are all positive such that

at least one of the follounng conditions 1s satisfied:

(i) Gy = .Pi(A],*I: = N(SDD).
(i)  ai; > P 4(A),t € N, for some o € [0, 1].
(i) @i > P*(A)Q} %(A),r € N, for some a € [0,1].
(IV) Qi Gy > R(A)PJ(A)J EN,JE N[t)
(v)  @iia;; > BP{A)Q;™*p?(A)Q; *(A),t € N,j € N(i), for some a € |0, 1.
(vi} For each ¢+ € N it holds that a;; > P;(A) or
i + Zﬂﬁ > Qi{A) + z Q;(A), where J := {t € N : a;; < Q;{A)}.
jeJ 7€ J
(vii) @i > min(P;(A4), @;(A4)),z € N and ay; +a;; > Pi(A), € N,7 € N(3).
(viil) a;; > QEF}(B),-IJ € N and Z ay Z FP;(A),t, € d,, for some pe N.
JE€L, JEL, '
(ix) There exists 1 € N such that
aii(aj; — Py(A) + |asi]) > Pi(4)]as:l, 7 € N(3).
Then A 1n an M-matriz.

Note that SDD matrices satisfy all of the conditions (i)-(ix).
For any matrix A = [a;;] € C™", we define M{A) = [m,,;| € R™" as follows

mis — Iaﬂl,t e Nmy; = —|ﬂ,':_.*|,!l: eN,je N(t)



