Journal of Computational Mathematics, Vol.B, No.3, 1890, 202-211.

COMPARATIVE TESTING OF FIVE NUMERICAL METHODS
FOR FINDING ROOTS OF POLYNOMIALS®

Glenn R. Luecke
(Department of Mathematics, Computation Center, Iowa State Unsversity, US.A.)

James D. Francis
(Depariment of Mathematics, Universily of Washington, U.5.A.)

Abstract

This paper summarizes the resulis of the comparative testing of (1} Wilf’s global bi-
section method, (2) the Laguerre method, (3) the companion matrix eigenvalue method,
(4) the companion matrix eigenvalue method with balancing, and (§) the Jenkens-Traub
method, all of which are methods for finding the zeros of polynomials. The fest set
of polynomials used are those suggested by [5|. The methods were compared on each
test polynomial on the basia of the accuracy of the computed roots and the CPU time
required to numerically compute all roots.

» Introduction

F

This paper summarizes the results of comparative testing of five methods that find all
zeros of a polynomial. Twenty-five polynomials were used which were designed to test po-
tential weakness in such algorithms; see {5]. All computer runs were made on a National
Advanced Systems AS/6 computer using the SVS operating system and using the WAT-
FIV FORTRAN compiler in double precision, which means about fifteen decimal digits of

accuracy.

Methods tested

1. The Jenkins—Traub Method (JTM)

A description of this method can be found in [3]. The IMSL Library [2] routine ZRPOLY
was used to implement this method for polynomials with real coefficients, and the IMSL
Library routine ZCPOLY was used for polynomials with complex coefficients.

2. The Laguerre Method (LM)

A description of this method can be found in [1]. The IMSL Library routine ZPOLR is
an adaptation of the program ZERPOL developed by B.T.Smith {7]. This routine will only
find approximations to the roots of polynomials with real coeflicients.
3. The Eigenvalue Method (EM)

It is well known that if A is the n X n companion matrix of a polynomial p of degree
n, then the characteristic polynomial os A is a known scalar multiple of p; see [6]. Thus,
the eigenvalues of A are the roots of p. Since A is an Upper Hessenberg matrix, the IMSL
Library routines EQRH3F (for real A) and ELRHIC (for complex A) were uged to compute
the eigenvalues of A.
4. The Eigenvalue Method with Balancing (EMB)

This method is identical to the companion matrix eigenvalue method mentioned above,
except that the matrix A was balanced (see [2]} before the eigenvalues of A were computed.

 * Received October 4, 1987,

Comparative Testing of Five Numerical Methods for Finding Roots of Polynomials 203

The IMSL Library routines EBALAF (for real A} and EBALAC (for complex A) were used

to balance A.
5. The Wilf Method (WM)

A description of this method can be found in [8]. The computer algorithm for this
method was kindly sent to us by Dr. Herbert Wilf. In the process of testing this routine,
several bugs were found in the FORTRAN code received and appropriate corrections were

made.
Test Polynomiﬁla

Test polynomials used are those suggested by [5]. Each polynomial was designed to test
for a specific potential problem. Even though this report gives some of the test polynomials in
factored form, the factors were multiplied out exactly and the coefficients of the polynomial
in the form ag + a;z + azz* + - - - 6,z were used by each method to determine the roots.
The following is a list of fourteen polynomials p;(2), - - -, p14(2) from which the twenty-five
test polynomials Ezl, - -, Ez25 are derived.

(1) p1(2) = B(z — A)(z + A)(z — 1) with A = 102, B=1(Ex1); A=10° B =1
(Ex2); A=10°, B=1(Ex3); A=2,B=10"% (Ex4); A= 2,B=10° (Ex 5}. p1(2) is
designed to test whether relatively large or small zeros or whether large or small coefficients
cause difficulty fgr the method; see [5].

(2) palz) = (z—1){z —2)(2—3) - - - (z— N) with N = 5 (Ex 6) and N = 10 (Ex7). This
polynomial is ill-conditioned for large values of N in the sense that the magnitudes of the
coefficients vary considerably. The leading coefficient is one while the constant term is N!.
This causes extreme variation of the polynomial between consecutive roots which can affect
the convergence of some methods. N should be chosen small enough so that all coefficients
can be represented exactly. . |

(3) pa(z) = (z— 10~1) {2~ 10"2) .- (2 — 10™N) with N = 3 (Ex 8) and 4 (Ex 9). For
this polynomial the coefficient of 2™ is one and the constant coefficient is 10™"'.p3(2) is
designed to test for underflow in its evaluation and the ability of a method to distinguish
zeros that are close together.

(4) pu(z) = (z — -1)%*(z — .5)(z — .6)(z ~ .7),(Ex 10). This polynomial, along with ps
through ps, have one or more multiple roots and/or “nearly” multiple roots (i.e. distinct,
but nearly equal roots), which can cause convergence difficulties for many algorithms.
C(8) ps(z) =z —.1)*z - .2)%(z — .3)%(2 — .4), (Ex 11).

(8) ps{z) = (z — .1){z — 1.001){z — .998){z — 1.00002)(z — .99999), (Ex 12).

(7) p1(2) = (2 — .001)(z — .01)(z — .1)(z — 1)}{(z — 10)(z — (.1 + As)}(z — (.1 — As)) with
A =0, (Ex13), A = .1 (Ex14), A = .001 (Ex15). This polynomial has a multiple root at 0.1
when A = 0 and a “nearly” multiple root when A is small.

(8) ps(z) = (z + 1)°,(Ex 16).

(9) po(z) = z°—1, (Ex 17). The five roots of this polynomial are equimodular roots which
can cause convergence difficulties, especially for algorithms which use power techniques to
separate such roots. | ‘

(10) piol2) = (2° — A~1)(2% + A) with A = 10° (Ex 18) and 10'° (Ex19).

(11} p1i(z) = (z — A)(z — 1)(z — A™!) with A = 10° (Ex20) and 10° (Ex21). py, is
designed to test the accuracy of methods that compute roots one (or one complex pair) at
a time and then use deflation to calculate the rest.

