Journal of Computational Mathematics, Vol.8, No.3, 1990, 307-320.

THE NUMERICAL SOLUTION OF SECOND-ORDER
WEAKLY SINGULAR VOLTERRA INTEGRO-
DIFFERENTIAL EQUATIONS*

Tang Tao
(Department of Applied Mathematical Studies, University of Leeds, Leeds, UK)
Yuan Wei

(Department of Applied Mathematics, Tsinghua Unsversily, Beijing, China)

Abstract

In this paper we investigate the attainable order of (global) convergence of col-
location approximations in certain polynomial spline spaces for aolutions of a class of
second-order volterra integro-differential equations with weakly singular kernels. While
the use of quasi-uniform meshes leads, due to the nonsmooth nature of these solutions,
to convergence of order less than one, regardless of the degree of the approximating
spline function, collocation on suitably graded meshes will be shown to yield optimal

convergence rates.

#

81. Introduction

In this paper we present an analysis of certain numerical methods for solving the second-
order Volterra integro-differential equation (VIDE)

/(0 = £t ) + | (6 - 5)"%k(t, o y(s))ds, tel:=10,T), (1.1)

with initial conditions y{0) = yo, ¥'(0) = 2. Here, the given functions f : [ x IR — IR and
k:S x IR — IR (with § := {(t,3) : 0 < s <t < T}) denote given smooth functions, and
constant a satisfies 0 < a < 1. In practical applications one very frequently encounters the
linear counterpart of (1.1)

y"(t) = p(t)y(t) + g(t) + /: (t—s)"“K(t,s)y(s)ds, t€l{0<a<l1).  (1.2)

In the subsequent analysis we shall, for ease of exposition, usually utilize the linear version
of (1.1) to display the principal ideas.

Equations of type (1.1) (in practical applications one occasionally encounters second-
order VIDEs whose right-hand sides contain also terms involving y'; see e.g., |8, 9|; we
shall consider this general case in a subsequent paper) arise in many areas of physics and
engineering. But the literature on the numerical solution of (1.1) or its genéral case is
comparatively small. Very little convergence analysis has been given so far. Moreover, as
far as high-order Volterra integro-differential equations are concerned, Aguilar & Brunner
(1] have presented a study of collocation techniques for Eq. (1.1) with « = 0, and Tang [10]
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for high-order Volterra integro-differential equations without singularity. Prosperetti |8, 9]
introduced methods based on piecewise cubic Hermite interpolation for a class of second-
order integro-differential equations, where care is taken that on a suitable initial interval the

nonsmooth solution 1 approximated accurately. No convergence analysis has been given to
this method.

The numerical methods to be analyzed will be collocation methods in the polynomial
spline space,

S50 (Zn) = {u: ule, =t Un € Pryy,0Sn <N -1,
wl?) (2.} = u(¢,) for t, € Zy and 5 =0, 1}, (1.3)
associated with a given partition (or : mesh) ITy of the interval I,
Oy :0=¢tM <t <. <t =T

(the index indicating the dependence of the mesh points on N will, for ease of notation,
subsequently be suppressed). Here, P,,.; denotes the space of real polynomials of degree
not exceeding m + 1, and we have set g := [tg,t1], On := (En,tn+1] {1 € n < N — 1); the
set Zy = {{, : 1 £ n < N — 1} (ie., the interior mesh points) will be referred to as the
knots of these polynomial splines. In addition, we define

F 4
h:=max{h,:0<n<N-1}, A:=min{h,:0<n< N -1}, (1.4)

where h,, := t,4; — t,; the quantity h is often called the diameter of the mesh IIn (note

that, according to the above remark on our notation, both A and A’ will depend on N).
In order to describe these collocation methods we rewrite (1.1), for ¢ € o,,, In “one-step

form”,

:
o"(6) = Fa(y;t) + / (¥ )%, 5,905 ds; (1.5)
in
where
ti+1
Falit) = (L y(®) + 3 f (¢ — 5)"k(t, 5, y(s))ds. (1.6
1=0
For given parameters {c;} with 0 < ¢; < --- < ¢, < 1, we introduce the sets
Xni={thy:=tp +chn;1<7<m}, 0<n<N-1, (1.7)
and we define
N-1
X(N):= | ) Xu;
n=0

the set X(N) will be referred to as the set of collocation points, while {¢;} will be called
collocation parameters. A numerical approximation to the exact solution y of (1.1} {or

(1.2)) is an element of Sm+1[ZN, satisfying the given equation on X (), i.e., by (1.5), this
approximation u i8 computed recursively from

ey
ul (tny) = Fp(ujtny) + AL / (c; — 8) “k(tng,tn + shn,un(tn + sh,))ds
" .

g =1, i, (1.8)



