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Abstract

A new parallel algorithm for inverting Toeplitz triangular matrices as well as solving
Toeplitz triangular linear systems is presented in this paper. The algorithm possesses
very good parallelism, which can easily be adjusted to match the natural hardware par-
allelism of the computer systems, that was assumed to be much smaller than the order
n of the matrices to be considered since thia is the usual case in practical applications.

The parallel time complexity of the algorithm is O([n/p]log n + log? p), where p is the
hardware parallelism.
»

L]

§1. Introduction

Parallelly inverting triangular matrices and solving triangular linear systems is an in-
teresting problem both in theory and practice. The best parallel algorithm known so far
requires O(log” n) time steps and O(n3) processors, where n is the order of the matrices!5:8].
The order of the time complexity can not be reduced further even for more strongly struc-
tured triangular matrices, but the number of processors needed can be reduced. Although
the approximate algorithm for parallelly solving Toeplitz triangular systems presented in [1]
reduces the time complexity, it requires precomputations, and does not seem practical since
some restriction must be imposed on the parameter € to ensure the nonsingularity of matrix

ALII. Chen and Lul?l constructed an algorithm for inverting Toeplitz triangular matrices
and solving Toeplitz triangular linear systems, by which the number of processors needed
to perform the algorithm can be reduced to n.

In practical applications, the number of processors of a computer system, denoted by p, iz
limited and frequently much smaller than n, the order of the matrices. We will consider the
problem on parallelly inverting Toeplitz triangular matrices as well as solving the associated
linear systems in this case. The parallel time complexity of the algorithm presented here iz
O{[n/p|log n + log® p), where log n means log, n and [2] 8 the integer ceiling function of x.

We will first give a method to carry out multiplication of a vector by a circulant or a
block circulant matrix in §2, and then develop an algorithm for computing the product of
the Toeplits or the block Toeplitz matrix and vector in §3. In §4, the method for invert-
ing Toeplitz triangular matrices as well as solving the associated Toeplitz systems will be

constructed.
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§2. Circulant Matrices and Block Circulant Matrices

Consider the following special class of Toeplitz matrices

Co Ci €y ' Cg-1
Cg-—-1 Co €1 ' £LCg-—-2
i = i b g Cg=—
C=1] -2 ¢&-1 <o =3 1 (2.1)
C1 Cn €y - ¢o

which are called circulant matrices. This kind of matrices are completely defined by their
first row, and thus frequently denoted by

C = circ (Cg, C1,€2, """, Gq_l).

Circulant matrices can be diagonalized by the Fourier matrix F' = (f;;)qx¢ With elements
fi; = g~ /24— -1 (t,7 = 1,2,-.,q), where w is the primitive nth root of unity!4l
1.e., it holds for any circulant matrices that

C = FA DF, (2.2)

where

D= diﬂ.g (Aﬂ,ll,“'.*q_l), (2.3)
and the eigenvalues Ar’s of C are defined by

qg—1

Ak=ZE;wH, k=0,1,“',q-1. (2.4)
=0

It is easy to see that premultiplying a vector by matrices F and F¥ may be accomplished
by Fast Fourier Transform (FFT} and its inverse, respectively, and the eigenvalues A;’s can
be computed via FFT4. Thus, multiplying any g-vector by a circulant can be accomplished

in (3log g + 1) time steps with ¢ processorsiZ],
A block matrix of the form

Cb = CiI'C (Tﬂ, Th Tg, s 4 ,Tq_]_),

where each of the blocks 7T, is a pth order matrix, is called a block circulant matrix. It is

easily verified that
g—1

C,=) P*QT;, (2.5)

k=0

where the notation ® denotes the Kronecker product of matrices, and
P = circ (0,1,0,---,0)
is a circulant of order g, and that (see [4])

P=FEDPF, (2.6)



