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Abstract With the development of the design complexity in embedded systems, hardware/software (HW/SW) parti-

tioning becomes a challenging optimization problem in HW/SW co-design. A novel HW/SW partitioning method based on

position disturbed particle swarm optimization with invasive weed optimization (PDPSO-IWO) is presented in this paper.

It is found by biologists that the ground squirrels produce alarm calls which warn their peers to move away when there is

potential predatory threat. Here, we present PDPSO algorithm, in each iteration of which the squirrel behavior of escaping

from the global worst particle can be simulated to increase population diversity and avoid local optimum. We also present

new initialization and reproduction strategies to improve IWO algorithm for searching a better position, with which the

global best position can be updated. Then the search accuracy and the solution quality can be enhanced. PDPSO and

improved IWO are synthesized into one single PDPSO-IWO algorithm, which can keep both searching diversification and

searching intensification. Furthermore, a hybrid NodeRank (HNodeRank) algorithm is proposed to initialize the population

of PDPSO-IWO, and the solution quality can be enhanced further. Since the HW/SW communication cost computing is

the most time-consuming process for HW/SW partitioning algorithm, we adopt the GPU parallel technique to accelerate

the computing. In this way, the runtime of PDPSO-IWO for large-scale HW/SW partitioning problem can be reduced effi-

ciently. Finally, multiple experiments on benchmarks from state-of-the-art publications and large-scale HW/SW partitioning

demonstrate that the proposed algorithm can achieve higher performance than other algorithms.

Keywords hardware/software partitioning, particle swarm optimization, invasive weed optimization, communication

cost, parallel computing

1 Introduction

Hardware/software (HW/SW) partitioning which

involves multidisciplinary and collaborative design is a

key step in the design of modern embedded products[1].

Implementation with software module has more flex-

ibility and needs less cost, but costs more executing

time, and vice versa in hardware case[2]. The tar-

get of HW/SW partitioning is to balance all the tasks

to optimize some objectives of the system under some

constraints[3]. Traditionally, HW/SW partitioning is

carried out manually. However, with the develop-

ment of the design complexity in embedded systems,

HW/SW partitioning becomes a challenging problem.

Many approaches about HW/SW partitioning have

been proposed. Based on the partitioning algorithm,

exact and heuristic solutions can be differentiated[4].

The proposed exact algorithms include dynamic

programming[5-6], Branch-and-Bound (B&B)[7-9] and

Integer Linear Programming (ILP)[10]. Exact algo-

rithms cannot provide a feasible solution for the large-

scale HW/SW partitioning problem because most for-

mulations of the HW/SW partitioning problem are NP-

hard. Thus, many researchers have applied heuris-
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tic algorithms to HW/SW partitioning. The tradi-

tional heuristic algorithms include hardware-oriented

and software-oriented ones. The hardware-oriented

approach starts with a complete hardware solution

and swaps parts to software until constraints are

violated[11-12], while the software-oriented approach

means that the initial implementation of the system

is supposed to be a software solution. General-purpose

heuristics include genetic algorithm (GA)[13-16], simu-

lated annealing (SA)[17-18], greedy algorithm[19], tabu

search (TS)[20-21], ant colony optimization (ACO)[22-23]

and particle swarm optimization (PSO)[24-25]. The

other group of partitioning-related heuristics is the

Kernighan-Lin heuristic[26], which is substantially im-

proved by many others[27-29]. All these approaches

can work perfectly within their own co-design en-

vironments, but due to the enormous differences

among them, it is not possible to compare the results

obtained[30].

In this paper, a novel HW/SW partitioning method

based on position disturbed particle swarm optimiza-

tion with invasive weed optimization (PDPSO-IWO)

is presented. To fight against premature convergence

and avoid local optimum, the particles in PDPSO-IWO

move away from the worst particle in the population,

near which there is a potential predatory threat. To

improve the search accuracy and the solution quality,

the improved IWO is integrated to search a better posi-

tion, with which the global best position is updated. To

enhance the solution quality, a hybrid NodeRank (HN-

odeRank) algorithm is proposed to initialize the popu-

lation. To accelerate HW/SW partitioning method

based on PDPSO-IWO, the HW/SW communication

cost runs in GPU parallel computing environment.

The rest of the article is organized as follows. Sec-

tion 2 describes related work. Position disturbed parti-

cle swarm optimization with invasive weed optimization

is presented in Section 3. A novel HW/SW partitioning

method based on PDPSO-IWO is presented in Section

4. Section 5 analyzes the performance of PDPSO-IWO

experimentally. Finally, conclusions are drawn in Sec-

tion 6.

2 Related Work

2.1 Problem Definition

In this paper, the partitioning problem definition is

based on the following notations. Given an undirected

graph G = (V,E), where V is the vertex set and E is

the edge set, the HW/SW partitioning problem can be

formulated to the minimization problem P as follows:

minimize
n
∑

i=1

hi(1− xi)

subject to
n
∑

i=1

sixi + C(x) 6 R,

xi ∈ {0, 1}, i = 1, 2, ..., n,

(1)

where x = (x1, x2, · · · , xn) indicates a solution of

HW/SW partitioning problem. xi = 1(0) denotes that

the node is partitioned to software(hardware). si and

hi indicate the software and the hardware cost of node

vi, respectively. C(x) indicates the communication cost

of x, and R is the constraint. In [19], C(x) is replaced

with uR, where 0 6 u 6 1, and then the problem P

can be converted to Q′:

maximize
n
∑

i=1

hixi

subject to
n
∑

i=1

sixi 6 (1− u)R,

xi ∈ {0, 1}, i = 1, 2, ..., n.

The HW/SW partitioning problem Q′ is reduced to

a variation of knapsack problem in [19]. To obtain the

global best solution, the PDPSO-IWO is used to solve

the problem P in (1).

2.2 Heuristic Algorithms

As a key challenge in HW/SW co-design, HW/SW

partitioning has been studied for many years. In early

studies, the HW/SW partitioning models and algo-

rithms have been tested on systems with some dozens

of components. The target architecture is supposed

to consist of a single software and a single hardware

unit[31-32]. The HW/SW partitioning problem has spe-

cific optimization objectives, such as minimizing power,

hardware area and communication overhead[33-35]. But

in recent research, the HW/SW partitioning model and

algorithm have been tested on systems with hundreds

or even thousands of components. The HW/SW par-

titioning problem is formalized as a task graph, or a

set of task graphs. In this work, the HW/SW parti-

tioning problem is based on the same assumptions and

system model which are used in [4, 19]. This paper

does not aim at partitioning for a given architecture,

nor does it propose a complete co-design environment.

The HW/SW partitioning definition is general enough

so that the proposed algorithm can be used in different

practical cases[4].

Many exact algorithms for HW/SW partitioning

were proposed in 1990s, such as B&B and ILP. Exact

algorithms have mathematic solution and can find high-

quality solutions rapidly for the small-scale HW/SW
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partitioning problem. Since most formulations of the

HW/SW partitioning problem are NP-hard, exact algo-

rithms fall victim to combinatorial explosion and tend

to be quite slow when the scale of HW/SW partition-

ing problem becomes large. In recent years, researchers

have applied many heuristic algorithms to HW/SW

partitioning, such as GA, ACO and TS. The heuris-

tic algorithm can find approximate global optimum in

short time.

In [19], the partitioning problem is transformed into

a one-dimensional search problem and three algorithms

are proposed. Since Alg-new3 works the best among

the three algorithms, Alg-new3 which is named as Base

is compared in this paper. A heuristic algorithm which

is named Heur was proposed in [21]. Experimental re-

sults show that Heur outperforms the algorithm in [19]

by up to 28%. In [36], NodeRank that calculates the

rank of each node iteratively was proposed to solve the

HW/SW partitioning problem. Experimental results

show that NodeRank outperforms the algorithm in [21].

PSO is attractive for the HW/SW partitioning

problem as it offers reasonable coverage of the design

space together with short execution time[25]. In [24], it

was found that PSO outperforms GA in the cost func-

tion and the execution time for solving the HW/SW

partitioning problem. In [37], the authors proposed a

modified PSO restarting technique to avoid quick con-

vergence, named the re-excited PSO algorithm, to solve

the HW/SW partitioning problem. In [38], it is re-

vealed that the performance of PSO outperforms that of

ILP, GA and ACO for solving the HW/SW partitioning

problem. In [39], Discrete Particle Swarm Optimization

(DPSO) and B&B algorithms were presented to solve

HW/SW partitioning problem, and DPSO was used to

increase the speed of B&B. In [40], the algorithm which

combines PSO and immune clone (IC) acquires bet-

ter trade-off between partitioning time and optimiza-

tion quality. However, the improved PSO strategies do

not consider the searching diversification and search-

ing intensification simultaneously. In this paper, the

searching diversification is enhanced by simulating the

squirrel behavior and the searching intensification is en-

hanced by integrating IWO. HNodeRank which makes

use of problem-specific knowledge is used to initialize

the population of PDPSO-IWO.

The disturbance approach in PDPSO-IWO is diffe-

rent from that in the algorithm of [41]. All particles

move away from the global worst position in PDPSO-

IWO. But random dimensions of the personal best posi-

tions produce disturbance for corresponding dimensions

of the global best position in [41].

It has been proved that heuristic algorithms take too

much time in addressing the large-scale HW/SW par-

titioning problem. In previous studies, PC clusters or

super computers were used to solve the problem[21,36].

However, because of sequential computing method, the

performance of such computer systems could not be

easily promoted. With the rapid development of par-

allel technique, using parallel computing is an intui-

tive and simple way to speed up the algorithm for

HW/SW partitioning problem. To accelerate the speed

of HW/SW partitioning, parallel HW/SW partition-

ing method based on message passing Interface (MPI)

was presented in [42-43]. In [44], the hardware accel-

erators such as field-programmable gate arrays (FP-

GAs), GPUs, and multicores were compared to solve

HW/SW partitioning. In [45], GPU-based acceleration

was used to solve two detailed cases of HW/SW parti-

tioning. However, the proposed methods accelerate the

whole process of HW/SW partitioning and the accel-

eration effect is not obvious. In this paper, we adopt

the GPU parallel technique to accelerate the HW/SW

communication cost computing which is the most time-

consuming process for HW/SW partitioning problem.

2.3 Basic Particle Swarm Optimization

PSO, which was first introduced by Kennedy and

Eberhart in 1995, emulates the social behavior of bird

flocking and fish schooling[46]. Basic PSO has received

significant interest from researchers studying in diffe-

rent research areas and has been applied to several real-

world problems, such as image segmentation, travelling

salesman problem and feature selection[47].

There are three parts in the evolution equation of

basic PSO. The first part represents the previous veloc-

ity, which provides the necessary momentum for parti-

cles to roam across the search space. The second part,

known as the cognitive component, represents the per-

sonal thinking of each particle. The third part is known

as the social component, which represents the collabo-

rative effect of particles[48].

3 Position Disturbed Particle Swarm

Optimization with Invasive Weed

Optimization

Basic PSO has many advantages, such as simply

implementation and few parameters. However, PSO

may easily get trapped into local optimum when solving

complex multimodal optimization problems. To search
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the global best solution, PDPSO-IWO is proposed to

solve the HW/SW partitioning problem.

3.1 Position Disturbed Particle Swarm

Optimization

It has been observed by biologists that social re-

lationship is important for helping an animal to cope

with its environment[49]. The ground squirrels warn

conspecifics of a predator’s presence through the pro-

duction of alarm vocalizations[50]. And their peers can

move away from the potential predatory threat[51]. The

survival of the fittest is the law of nature[52]. The

ground squirrels that cannot escape from predators will

be eaten. To avoid the local optimum, the behavior is

simulated in PDPSO. The worst particle in the popu-

lation that cannot escape from predators is most likely

to be eaten by the predator. Then the place near the

worst particle in the population has potential predatory

threat, and we can give following definitions.

Definition 1. The particle which is the most likely

to be eaten by the predator is the worst particle in the

population.

Definition 2. The place from which the particles

move away is the place where there is a potential preda-

tory threat.

Definition 3. The place where there is a poten-

tial predatory threat is the global worst position in the

population.

In PDPSO, xSize is the number of the particles and

n is the number of nodes. xSize particles search the

global best position in the n-dimension search space.

And each particle has the following attributes: a cur-

rent position in the search space Xi, a current velocity

Vi, and a personal best position pbesti in the search

space, then:

Xi = (Xi1, · · · , Xid, · · · , Xin),

Vi = (Vi1, · · · , Vid, · · · , Vin),

pbesti = (pbesti1, · · · , pbestid, · · · , pbestin),

where 1 6 i 6 xSize, 1 6 d 6 n. gbest =

(gbest1, gbest2, · · · , gbestn) is the global best position

discovered by the whole population. gworst =

(gworst1, gworst2, · · · , gworstn) is the global worst po-

sition. The algorithm may be trapped into the local

optimum when the current global best value is almost

the same as the previous one. Each particle approaches

its personal best position and the global best position,

and moves away from the global worst position, and

then evolution equations of PDPSO are:

V k+1
id = wV k

id + c1r1(pbest
k
id −Xk

id) +

c2r2(gbest
k
d −Xk

id)−

c3r3(gworst
k
d −Xk

id), (2)

Xk+1
id = Xk

id + V k+1
id . (3)

w is the inertia factor used to balance the local and

the global search abilities; c1 and c2 are learning co-

efficients; c3 is the disturbed coefficient; r1, r2 and r3
are random numbers uniformly distributed in the range

[0, 1]; k is the number of iterations. The fourth part of

(2) that particles move away from the global worst po-

sition can disturb particle distribution and make the

population become various. Therefore, PDPSO can

fight against premature convergence and avoid local op-

timum.

The direction that the i-th particle moves towards

is shown in Fig.1. As shown in Fig.1, t1 is the direction

of the previous velocity. t2 is the direction that the i-th

particle approaches its personal best position. t3 is the

direction that the i-th particle approaches the global

best position. t4 is the direction that the i-th particle

moves away from the global worst position. t5 is the di-

rection combined with t1, t2, t3 and t4. Therefore, t5 is

the final direction that the i-th particle moves towards.

t

t

t

t

t

Xi

gworst

gbest

pbest

Fig.1. Direction that the i-th particle moves towards.

3.2 Convergence Analysis of PDPSO

The convergence of PDPSO is analyzed in this pa-

per. According to (2), the velocity equation of PDPSO

can be converted to:

V k+1
i = wV k

i + c1r1pbest
k
i + c2r2gbest

k −

c3r3gworst
k − (c1r1 + c2r2 − c3r3)X

k
i . (4)
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When k → ∞, V k
i and V k+1

i are equal to zero. And

(4) can be converted to:

lim
k→∞

Xi =
c1r1pbest + c2r2gbest − c3r3gworst

c1r1 + c2r2 − c3r3
.

Since r1, r2, r3 are random numbers uniformly dis-

tributed in the range [0, 1], the mean of Xi in PDPSO

is:

lim
k→∞

E(Xi)

= E(
c1r1pbest+ c2r2gbest− c3r3gworst

c1r1 + c2r2 − c3r3
)

=
c1pbest+ c2gbest− c3gworst

c1 + c2 − c3
= (1 − α+ β)pbest+ αgbest − βgworst, (5)

where α = c2
c1+c2−c3

, β = c3
c1+c2−c3

. In the same way,

the mean of Xi in PSO is:

lim
k→∞

E(Xi) = E(
c1r1pbest+ c2r2gbest

c1r1 + c2r2
)

=
c1pbest+ c2gbest

c1 + c2
= (1− δ)pbest+ δgbest, (6)

where δ = c2
c1+c2

. According to (6), the diversifi-

cation and the convergence of PSO are excellent in

early iterations. However, the particles approach from

pbest to gbest in late iterations. Then the diversifi-

cation is reduced and the algorithm is trapped into lo-

cal optimal[53]. According to (5) and (6), convergence

values of PDPSO and PSO are different. Therefore,

PDPSO can increase population diversity, and avoid

premature convergence and local optimal. Then the

global search ability can be enhanced.

3.3 Updating the Global Best Position

Invasive weed optimization is a population-based

optimization algorithm inspired from invasive and ro-

bust nature of weeds in growth and colonizing[54]. IWO

has been applied to solve many optimization problems,

such as linear antenna array design, unit commitment

problem and nonlinear equations systems[55].

IWO has a small amount of calculation and can

enhance the searching intensification in PDPSO-IWO.

Therefore, IWO is integrated to search a better posi-

tion, by which the global best position is updated. The

algorithm can be described in the following steps.

Step 1: Initializing a Population. A population of

initial solutions is filled with the personal best position

pbest.

Step 2: Reproduction. The production of seeds by

a weed is dependent on its own fitness and the fitness

of its colony. The higher the weed’s fitness, the more

the seeds it produces. The formula of weeds producing

seeds is:

weedg =
f − fmin

fmax − fmin
(wmax − wmin) + wmin,

where f is the current weed’s fitness, fmax and fmin

represent the maximum and the minimum fitness of

the current population respectively, and wmax and wmin

represent the maximum and the minimum value of a

weed respectively.

Step 3: Spatial Dispersal. The generated seeds are

randomly distributed in the search space such that they

abode near to the parent plant by the normal distri-

bution with the mean equal to zero and varying vari-

ance. However, the standard deviation (σ) of the ran-

dom function is reduced in each iteration from an initial

value σinit to its final value σfinal by means of a nonlin-

ear equation presented as follows:

σcur =
(itermax − iter)t

(itermax)
t (σinit − σfinal) + σfinal,

where itermax is the maximum number of iterations,

σcur is the standard deviation in the current iteration,

and t is the nonlinear modulation index.

Step 4: Competitive Exclusion. After passing some

iterations, the number of produced plants in a colony

reaches its maximum (PMAX). In this step, a competi-

tive mechanism is activated for eliminating undesirable

plants with poor fitness and allowing fitter plants to

reproduce more seeds.

Step 5: Check Termination Criterion. If the max-

imum number of iterations is reached, the best fitted

plant is considered as the optimal solution; otherwise,

return to step 2.

In step 1, to enhance the solution quality, initial so-

lutions are the personal best positions pbest. Hence,

the population can remain diversiform and the search

accuracy can be improved. To reduce the computa-

tional burden, the production of seeds by each weed in

step 2 is set to the same value. The improved formula

of weeds producing seeds is:

weedg = l.

The number of seeds that each weed produces is set

to l. Then the process of reproduction is simplified,

and the calculation and runtime can be reduced. In

each iteration, the global best position is updated by

the improved IWO. Therefore, there is a greater possi-

bility of escaping from local optimum in PDPSO-IWO.
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4 Novel Hardware/Software Partitioning

Method Based on PDPSO-IWO

4.1 Population Initialized by HNodeRank

In NodeRank, Adjust Out and Adjust In which are

used to search a feasible solution are computed in each

iteration. Since the time complexity of Adjust Out and

Adjust In is O(logn(n+m)), the computation is large in

NodeRank. To reduce the computational burden, the

HNodeRank algorithm which is combined with NodeR-

ank and Base is proposed to solve the HW/SW parti-

tioning problem. The binary search approach which is

proposed in Base is used to search a feasible solution in

HNodeRank. The formal description of the algorithm

HNodeRank is shown in Algorithm 1.

In HNodeRank, a greedy solution ofQ′ in lines 6 and

15 is the solution produced by the algorithm Alg-greedy

which is proposed in [19]. In line 23, the neighboring

value of x′ is the partitioning solution obtained from

reversing t bits of x′ which is proposed in [21].

Theorem 1. The time complexity of HNodeRank is

O(N(nlogn+(d+logd)(n+m))), where n is the number

of nodes, m is the number of edges, and d = 1/∆u, and

N is the maximum iteration time of HNodeRank.

Proof. In HNodeRank, line 3 runs in O(nlogn) time,

and Alg-new3 runs in O(nlogn + (d + logd)(n + m))

time in the worst case[19]. In lines 2∼35, the repeat-

until runs in N time. Therefore, the time complexity

of HNodeRank is O(N(nlogn+ (d+ logd)(n+m))). �

The solution quality of HNodeRank is similar to

that of NodeRank while the time complexity is lower.

The solution of PDPSO-IWO is initialized by HNodeR-

ank, which can make use of problem-specific know-

ledge. Since PDPSO-IWO is an improved PSO, the pro-

posed PDPSO-IWO can make use of the strong global

search ability of general-purpose heuristic simultane-

ously. Therefore, the solution quality is enhanced and

the runtime is reduced in PDPSO-IWO.

Algorithm 1. HNodeRank

Input: communication graph G and the constraint R

Output: a partitioning solution best so far = (x1, x2, ..., xn)
1: best so far = (x1, x2, ..., xn), E(c) = (x1, x2, ..., xn), k=0, u=1, ε=0.02, left=0, right=1
2: repeat

3: Sort nodes {vi}i6n according to h1

s1+E(c1)
>

h2

s2+E(c2)
> · · · > hn

sn+E(cn)

4: repeat

5: middle= left+right

2
6: x′=a greedy solution of Q′ with middle

7: if x′ is a feasible solution of P then

8: right=middle

9: else

10: left=middle

11: end if

12: until right− left < ∆u

13: u=right

14: repeat

15: x′=a greedy solution of Q′ with u

16: if x′ is a feasible solution of P then

17: if x′ is better than best so far then

18: best so far=x′

19: end if

20: Reset ∆u

21: else

22: for i = 1 to n do

23: y = the i-th neighbor of x′

24: if y is a feasible solution of P and y is better than best so far then

25: best so far=y

26: end if

27: end for

28: ∆u=(1+ε)∆u

29: end if

30: u = u−∆u

31: until u < 0

32: P k
S
(i) =

{

xiPS + (1 − xi)PH , if k = 0

αP k−1
S

(i) + (1 − α)xiPS + (1 − α)(1 − xi)PH , if k > 1

33: E(ci) =
∑

j∈V,(i,j)∈E

((P k
S (i)× P k

H(j)) + (P k
S (j)× P k

H(i))) × cij

34: k = k + 1
35: until k > N
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4.2 Parallel HW/SW Partitioning Method
Based on PDPSO-IWO

Since the HW/SW partitioning is treated as a dis-

crete optimization problem, the discrete PDPSO-IWO

is adopted in this paper. In discrete PDPSO-IWO, the

position of each particle in each iteration is defined as

follows:

Xk
id =

{

1, if r4 < sig(V k
id),

0, otherwise,
(7)

where the sigmoid function sig(V k
id) =

1

1+e
−V k

id

, and r4

is a random number uniformly distributed in the range

[0, 1]. If r4 is smaller than sig(V k
id), then Xk

id is 1;

otherwise, Xk
id is 0. The position of particle is the

HW/SW partitioning solution and the fitness of par-

ticle is the hardware cost. The discrete PDPSO-IWO

is used to optimize the minimization problem P in (1).

Then the HW/SW partitioning method based on po-

sition disturbed particle swarm optimization with in-

vasive weed optimization is named PDPSO-IWO. And

the flowchart of PDPSO-IWO is shown in Fig.2.

In Fig.2, to reduce the computation, the algorithm

may be trapped into the local optimum when the previ-

ous and current values of the global best position fgbest

are almost the same. The description of PDPSO-IWO

is shown in Algorithm 2.

In PDPSO-IWO, X is initialized by the partition

solution which is obtained by HNodeRank. xSize is

the number of particles, and n is the number of nodes.

In line 3, fpbest is the fitness of pbest, fgbest is the

fitness of gbest and fgworst is the fitness of gworst.

In lines 15∼19, the velocity and the position of each

particle are updated by (2) and (3) respectively when

the algorithm is trapped into the local optimum. Oth-

erwise, they are updated by the evolution equation of

basic PSO. Adjust In is used to search a better solu-

tion in line 20. The global best position is updated by

IWO in line 21, and the description of IWO is shown

in Algorithm 3.

In PDPSO-IWO, the calculation of the HW/SW

communication cost C(x) in line 10 is computed by:

C(x) =

n
∑

i=1

n
∑

j=1

cij |xi − xj |, (8)

where cij indicates the communication cost between

node vi and node vj if they are in different contexts.

Theorem 2. The time complexity of the HW/SW

communication cost C(x) is O(n2), where n is the num-

ber of nodes. The time complexity of PDPSO-IWO is

O(iter num × xSize × n2), where n is the number of

nodes, xSize is the number of particles in the popu-

lation, and iter num is the maximum iteration time of

PDPSO-IWO.

Population Is Initialized by HNodeRank

Parameters of PDPSO-IWO Are Initialized

Particle Is Replaced by the Solution Obtained by
HNodeRank

Stopping Criterion Is Satisfied 

Yes

No

End

Begin

Constraints in (1) Are Satisfied

No

Population Is Discretized by (7) 

Velocity and Position of Each Particle Are
Updated  by the Evolution Equation of Basic PSO

Yes

Yes

No

Compute pbest֒ gbest֒ gworst֒ fpbest֒ 
fgbest and fgworst

Global Best Position Is Updated by IWO 

Algorithm Is Trapped into 
Local Optimum

Velocity and Position of Each Particle 
Are Updated by (2) and (3)  

Fig.2. Flowchart of PDPSO-IWO.

Proof. In (8), there are two layers of iteration, and

each iteration is implemented in O(n). Therefore, the

time complexity of C(x) is O(n2). In PDPSO-IWO,

the time complexity of HNodeRank is O(N(nlogn +

(d + logd)(n + m))). In lines 9∼13, the time comple-

xity is O(xSize×n2). It takes O(xSize×n) to update

pbest, gbest, fpbest and fgbest in line 14. Adjust In

in line 20 can be implemented in O(logn(n + m))

time[36]. Since IWO is a simple optimization algo-

rithm, we set the time complexity of IWO lower than

O(xSize×n2). Compared with logn(n+m), xSize×n2

is larger. The maximum iteration of PDPSO-IWO is

iter num. Therefore, the time complexity of PDPSO-

IWO is O(iter num× xSize× n2). �
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Algorithm 2. PDPSO-IWO

Input: communication graph G and the constraint R

Output: global best partition solution gbest and its hardware cost fgbest

1: X nr = the partition solution obtained by HNodeRank
2: X = (X nr,X nr, · · · , X nr)
3: pbest = X, fpbest = 0, gbest = (0, 0, · · · , 0), fgbest = 0,gworst = (0, 0, · · · , 0), fgworst = inf, fgbestold = 1, iter = 0
4: Initialize other parameters, such as w, c1, c2, c3 and epsx, the individual number xSize and the maximum iteration time iter num

5: repeat

6: iter = iter+1
7: X is discretized by (7)
8: sx = S(X), hx = H(X)
9: for i = 1 to xSize do

10: if sx(i) + C(Xi) > R then

11: Xi = X nr, hx(i) = H(Xi)
12: end if

13: end for

14: Update pbest,gbest, gworst, fpbest, fgbest and fgworst

15: if |fgbestold− fgbest| > epsx then

16: The velocity and the position of particles are updated by the evolution equation of basic PSO
17: else

18: The velocity and the position of particles are updated by (2) and (3), respectively
19: end if

20: gbest = Adjust In(gbest), fgbest = H(gbest)
21: The global best position is updated by IWO
22: fgbestold = fgbest

23: until (iter > iter num)

Algorithm 3. IWO

Input: personal best position pbest

Output: updated global best position gbest

1: Initialize the parameters, such as t, PMAX, l, itermax, k = 0
2: solutions are initialized by pbest

3: repeat

4: The standard deviation in the current iteration σcur is computed
5: Each weed in the population produces l weeds with the mean equal to zero and the variance equal to σcur

6: All seeds are ranked together with their parents
7: Weeds with lower fitness are eliminated to reach the maximum allowable population in the colony
8: k=k+1
9: until k > itermax

HW/SW partitioning method based on basic PSO

is named PSO in this paper. The computing steps of

PSO and PDPSO-IWO are almost the same. In PSO,

the velocity and the position of particles are updated

by the evolution equation of basic PSO. The global best

position is not updated by IWO in PSO.

Theorem 3. The space complexity of PDPSO-IWO

is O(xSize × n), which is the same as that of PSO,

where n is the number of nodes and xSize is the num-

ber of the particles.

Proof. In PDPSO-IWO, each particle gets close to

the global best position, each particle’s individual best

position, and moves away from the global worst posi-

tion in the population. The space complexity of the

global best position and the global worst position is

O(n). The space complexity of each particle’s individ-

ual best position is O(xSize×n). Therefore, the space

complexity of PDPSO-IWO is O(xSize × n). In PSO,

each particle approaches the global best position, each

particle’s individual best position. Therefore, the space

complexity of PSO is O(xSize× n), which is the same

as that of PDPSO-IWO. �

In PDPSO-IWO, the HW/SW communication cost

is considered in each iteration. Since the time comple-

xity of the HW/SW communication cost C(x) is O(n2),

the calculation of C(x) is excessive. In order to ac-

celerate the speed of PDPSO-IWO, the HW/SW com-

munication cost computing which is the most time-

consuming process for HW/SW partitioning method

runs in an ordinary GPU parallel platform. In PDPSO-

IWO, the communication cost computing for xSize par-

ticles is in lines 9∼13. And the computing process

runs in an ordinary GPU parallel platform. The par-

allelization of the communication cost in PDPSO-IWO

is shown in Fig.3[56].
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End

Load G and X

Output C↼X↽ 

. . .

Start

C↼X↽ C↼X↽ C↼XxSize↽

Fig.3. Parallelization of the communication cost.

As shown in Fig.3, the communication costs

C(X1), C(X2), ..., C(XxSize) are computed simultane-

ously in a typical GPU parallel platform, which saves

a lot of computation time. All of communication costs

are joined together and the HW/SW communication

cost computing result is obtained[57]. Therefore, the

runtime of PDPSO-IWO can be reduced efficiently.

5 Experimental Results and Analysis

In order to evaluate the performance of PDPSO-

IWO, the algorithm is applied to solve several acknowl-

edged benchmarks of HW/SW partitioning problem.

The experiment environment is as follows: CPU: i7-

4770 @3.4 GHz; physical memory: 16 GB; software:

Matlab R2014b. The GPU platform running the par-

allel procedures is NVIDIA GTX 780, consisting of 12

SMs (streaming multiprocessors), 192 SPs (streaming

processors) per SM. The clock frequency of each SP is

1.059 GHz. The size of global memory is 3 GB.

We adopt the same experimental parameters as [19].

Software costs si are generated as uniform random

numbers from interval [1, 100]. Hardware costs hi are

generated as random numbers from a normal distribu-

tion with expected value k × si and a given standard

deviation. The value of k only corresponds to the choice

of units for software and hardware costs. The communi-

cation costs are generated as uniform random numbers

from interval [0, 2ρsmax], where smax is the highest soft-

ware cost. ρ is named communication to computation

ratio (CCR), and it is taken as 0.1, 1, and 10, corre-

sponding to computation-intensive case, intermediate

case, and communication-intensive case, respectively.

Constraint R is randomly generated as a uniform ran-

dom number from interval [0, 0.5
∑

si] or [0.5
∑

si,
∑

si]. The two cases are indicated as R = low and R

= high, respectively. There are six cases for different

values of CCR and R, which are shown in Table 1.

Table 1. Cases for Different Values of CCR and R

Case CCR R

1 0.1 Low

2 0.1 High

3 1.0 Low

4 1.0 High

5 10.0 Low

6 10.0 High

For testing, we use benchmarks from MiBench[58]

and task graphs in [4, 19, 21, 36]. The characteristics

of the test benchmarks are summarized in Table 2. In

Table 2, size and number are the scale size and the

number of the HW/SW partitioning problems, respec-

tively. For examples, crc32 is 32-bit cyclic redundancy

check and dijkstra is the algorithm which computes

Table 2. Summary of Used Benchmarks

Name n m size number Description

crc32 25 34 152 1 32-bit cyclic redundancy check

patricia 21 50 192 2 Routine to insert values into patricia tries, which are used to store routing tables

dijkstra 26 71 265 3 Compute the shortest paths in a graph

clustering 150 333 1 299 4 Image segmentation algorithm in a medical application

rc6 329 448 2 002 5 RC6 cryptographic algorithm

random1 1 000 1 000 5 000 6 Random graph

random2 1 000 2 000 8 000 8 Random graph

random3 1 000 3 000 11 000 10 Random graph

random4 1 500 1 500 7 500 7 Random graph

random5 1 500 3 000 12 000 11 Random graph

random6 1 500 45 000 16 500 13 Random graph

random7 2 000 2 000 10 000 9 Random graph

random8 2 000 4 000 16 000 12 Random graph

random9 2 000 6 000 22 000 14 Random graph
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the shortest path in a graph. In Table 2, n and m de-

note the number of nodes and edges in the communica-

tion graph, respectively. The formula size = 2n + 3m

is utilized for the size evaluation of the graph. This

is because each node is assigned two values (its hard-

ware and software costs) and each edge is assigned three

numbers (the identities of its endpoints and its commu-

nication cost).

The algrithms of Base, Heur, NodeRank, PSO and

PDPSO-IWO are compared to solve the acknowledged

benchmarks in Table 2. As important parameters, the

learning coefficients c1 and c2, and the disturbed co-

efficient c3 have great effect on the performance of

PDPSO-IWO. In this paper, the appropriate values of

c1, c2 and c3 are obtained by experiments. In PDPSO-

IWO, c1 = 1.5, c2 = 1.5, c3 = 1, epsx = 1, m = 3,

PMAX = 50, l = 4, and the maximum iteration number

of IWO is 30. In PSO, c1 = 2, and c2 = 2. The param-

eters of NodeRank are set as the same values in [36]. In

PDPSO-IWO and PSO, inertia factor (w) is decreasing

from 0.9 to 0.7 linearly with the iterations, the indi-

vidual number xSize is 40 and the maximum iteration

number is 50. Without loss of generality, we choose

100 as the number of the random instances for statis-

tical comparison in our empirical study. The solution

quality and the runtime of algorithms are compared.

5.1 Solution Quality

We define A and B as the HW/SW partitioning al-

gorithms. HA is the average hardware cost of algorithm

A and HB is the average hardware cost of algorithm

B. In order to compare the solution quality of the algo-

rithm, we define the improvement of algorithm A over

algorithm B as:

imp =

(

1−
HA

HB

)

× 100%. (9)

In (9), imp > 0, imp = 0 and imp < 0 reflect

that the performance of algorithm A is better than, the

same as, and worse than that of algorithm B, respec-

tively. Fig.4 shows the improvement of different algo-

rithms over Base, averaged over 100 instances on diffe-

rent cases. Abscissa represents the problem size while

the vertical axis indicates the improvement of different

algorithms over Base.

In Fig.4, generally, the solutions found by PDPSO-

IWO are better than or similar to the solutions found

by the other algorithms. For the case of the smaller

communication cost, e.g., as shown in Fig.4(a), the so-

lutions found by NodeRank, PSO and PDPSO-IWO
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Fig.4. Improvements of different algorithms over Base, averaged over 100 instances on different cases. (a) Case 1. (b) Case 2. (c) Case
3. (d) Case 4. (e) Case 5. (f) Case 6.
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are almost the same. This is because the HW/SW par-

titioning problem with small communication cost does

not have a significant impact on the constraint. The

optimal solutions can be easily found by other algo-

rithms. On the other hand, with the increase of the

communication cost, the constraints of the partitioning

problem become far different from those of the stan-

dard knapsack problem. And it becomes harder to

search the optimal solution. Since the global search

ability of PDPSO-IWO is stronger, the improvement

differences among PDPSO-IWO, PSO and NodeRank

become greater, e.g., as shown in Fig.4(f).

In order to explore the worst-case performance of

PDPSO-IWO, we investigate the distribution of the im-

provement over the algorithm Base for 100 random in-

stances. Without loss of generality, the imp values are

collected from −50% to 50%. This corresponds to the

distribution interval [−50, −45, . . . , −10, −5, 0, 5, 10,

. . . , 45, 50] with the unit length of 5 in x-axis. We

choose the representative benchmark Random2 with

size 8 000. And the distribution of improvements over

Base on different cases with the benchmark is shown in

Fig.5. The ordinate represents the count of solution in-

stances while the abscissa indicates the corresponding

distribution interval.

From Fig.5, the corresponding improvements are

distributed in a relatively large interval for the cases of

small communication cost, e.g., as shown in Fig.5(a).

And the interval becomes smaller with the increas-

ing communication cost, e.g., as shown in Fig.5(f).

PDPSO-IWO can produce higher quality solutions than

the other algorithms for most instances especially when

the communication cost is relatively large.

5.2 Runtime of Algorithms

The speedup Sp is used to evaluate the GPU parallel

efficiency of the HW/SW communication cost C(x):

Sp =

(

Tseq

Tpar

)

× 100%,

where Tseq is the runtime of communication cost in se-

quential computing environment and Tpar is the run-

time in parallel computing environment. Fig.6 shows

the speedup of HW/SW communication cost, averaged

over 100 instances on different cases. The abscissa rep-

resents the problem number while the ordinate indi-

cates the average speedup.

As shown in Fig.6, generally, the speedup becomes

larger and the advantage of parallel computing becomes

more obvious as the problem size and the communica-

tion cost increase. The speedup is greater than 1 when

the problem size is larger than 5 000. The speedup is
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Fig.5. Distribution of improvements over Base, 100 random instances on different cases with size 8 000. (a) Case 1. (b) Case 2. (c)
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smaller than 1 when the problem size is equal to or

less than 5 000. This is because there are extra ope-

rations in GPU parallel computing, such as thread cre-

ation, task creation and data communication. The ope-

rations take extra runtime. When the problem size

is small, the extra runtime takes up much runtime of

the HW/SW communication cost computing. Then the

runtime of C(x) in parallel computing environment is

longer. When the problem size is large, the calculation

of C(x) is great. Compared with the runtime of C(x),

the extra runtime is small. Then the runtime of C(x)

in parallel computing environment is shorter.
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Fig.6. Speedup of HW/SW communication cost, averaged over
100 instances on different cases.

The communication cost computing of PDPSO-

IWO runs in GPU parallel platform, while the comput-

ing of other algorithms runs in sequential computing

environment. Table 3 and Table 4 show the runtime

for case 1 and case 6, respectively.

Table 3. Comparisons in Runtime (in Second) for Case 1

(Averaged over 100 Instances)

size Base Heur NodeRank PSO PDPSO-IWO

152 0.002 1 0.001 5 0.001 2 0.022 2 0.842 1

192 0.002 2 0.002 2 0.001 4 0.020 0 0.960 9

265 0.002 3 0.002 3 0.001 9 0.023 2 1.001 8

333 0.002 7 0.002 9 0.023 5 0.123 2 1.132 4

2 002 0.004 1 0.007 2 0.074 1 0.260 5 1.362 3

5 000 0.009 4 0.034 9 0.442 8 1.077 5 2.165 0

7 500 0.011 0 0.090 2 1.022 4 2.587 1 3.666 3

8 000 0.011 0 0.081 5 0.893 2 2.235 3 3.087 7

10 000 0.016 7 0.151 3 1.741 5 4.018 1 4.820 9

11 000 0.016 3 0.114 6 1.311 9 3.140 1 3.766 3

12 000 0.017 2 0.193 0 1.673 0 4.986 4 5.510 8

16 000 0.022 0 0.311 0 3.528 8 8.127 7 8.010 7

16 500 0.022 7 0.424 1 4.682 2 10.560 8 9.756 4

22 000 0.024 5 0.510 2 5.463 4 13.546 2 12.125 2

Table 4. Comparisons in Runtime (in Second) for Case 6

(Averaged over 100 Instances)

size Base Heur NodeRank PSO PDPSO-IWO

152 0.002 8 0.001 5 0.002 3 0.021 0 1.013 0

192 0.003 5 0.001 3 0.001 7 0.020 7 1.024 7

265 0.003 5 0.002 4 0.002 4 0.024 3 0.998 3

333 0.004 0 0.003 5 0.030 1 0.131 5 1.164 5

2 002 0.004 4 0.009 3 0.086 0 0.289 0 1.304 8

5 000 0.012 8 0.050 0 0.516 6 1.320 7 2.453 8

7 500 0.014 0 0.109 7 1.072 8 2.620 0 3.614 5

8 000 0.014 8 0.101 9 0.981 7 2.524 5 3.425 2

10 000 0.025 8 0.194 7 1.952 2 4.538 2 5.340 4

11 000 0.025 9 0.154 6 1.469 8 3.741 0 4.396 8

12 000 0.026 4 0.233 5 2.222 0 5.406 9 5.954 9

16 000 0.030 2 0.418 6 4.027 0 9.412 8 9.102 5

16 500 0.030 5 0.308 2 4.502 2 12.452 1 11.376 9

22 000 0.032 7 0.619 8 5.983 0 14.145 8 12.368 3

As shown in Table 3 and Table 4, the runtime of

algorithms becomes longer when the problem size be-

comes larger. Generally, the runtime of algorithms in

Table 4 is longer than the corresponding value in Ta-

ble 3. This is because the computational burden be-

comes greater when the HW/SW communication cost

becomes larger. The runtime of PDPSO-IWO is longer

than that of PSO when the size is smaller than 16 000.

This is because the computational burden of PDPSO-

IWO is larger than that of PSO and the advantage of

the parallel computing is not obvious when the size is

small. On the other hand, the HW/SW communication

cost which runs in an ordinary GPU parallel platform

becomes excessive when the size is large. And the run-

time of PDPSO-IWO is shorter than that of PSO when

the size is equal to or greater than 16 000.

5.3 Large-Scale HW/SW Partitioning

As the devolvement of modern embedded systems,

the scale of HW/SW partitioning becomes larger. In

order to analyze the performance of PDPSO-IWO fur-

ther, the algorithm is used to solve the large-scale

HW/SW partitioning problem which is shown in Ta-

ble 5.

The re-excited PSO (RPSO) algorithm proposed in

[37] is used to solve the HW/SW partitioning prob-

lem. The parameters of RPSO are set to the same

values of PSO. The algorithms of Base, Heur, NodeR-

ank, PSO, RPSO and PDPSO-IWO are compared to

solve the large-scale HW/SW partitioning problem on

the typical case 3. Fig.7 shows the improvement and

runtime of different algorithms, averaged over 100 in-

stances on case 3.
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Table 5. Summary of Large-Scale HW/SW Problem

Name n m size number

random10 5 000 5 000 25 000 15

random11 5 000 10 000 40 000 17

random12 6 000 12 000 48 000 18

random13 7 000 7 000 35 000 16

random14 7 000 14 000 56 000 20

random15 8 000 16 000 64 000 21

random16 9 000 18 000 72 000 22

random17 10 000 10 000 50 000 19

random18 10 000 20 000 80 000 23
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Fig.7. Performance of different algorithms, averaged over 100
random instances on case 3. (a) Improvement. (b) Runtime.

As shown in Fig.7, the differences of solution qual-

ity among PDPSO-IWO, NodeRank, PSO and RPSO

become larger when the size increases. PDPSO-IWO

which enhances the HW/SW partitioning solution dis-

tinctly has stronger search ability for the large-scale

HW/SW partitioning problem. The solution quality

of RPSO is higher than that of PSO, but is lower

than that of PDPSO-IWO. When the size is 80 000,

the runtime of PDPSO-IWO is shorter than that of

PSO by 41.759 2 s, and is shorter than that of RPSO

by 50.7672 s. The advantage of the parallel computing

is obvious when the scale is large. Therefore, the GPU

parallel PDPSO-IWO is an efficient method to solve the

large-scale HW/SW partitioning problem.

6 Conclusions

A novel hardware/software partitioning method

based on position disturbed particle swarm optimiza-

tion with invasive weed optimization was proposed. In

PDPSO-IWO, the particles move away from the worst

particle in the population, and the searching population

remains varied. To improve the initialization and repro-

duction strategies, the IWO was integrated to search a

better position, with which the global best position is

updated. The search accuracy and the solution quality

are improved. HNodeRank was proposed to initialize

the population, and the solution quality was enhanced

further. The HW/SW communication cost ran in GPU

parallel computing environment, and the runtime was

reduced efficiently in the experiments.

In future, we will explore at least four directions but

not limited. 1) We will adopt the similar modification

strategy from the improved optimization methods[59],

and therefore we should expect that the performance

of PDPSO-IWO can be enhanced substantially. 2)

GPU has been a popular acceleration platform in sci-

entific computation[60-61]. In our current research, we

simply use the Matlab parallel programming on GPU.

How to explore the GPU power with lower-level pro-

gramming (such as thread/warp/block parallel comput-

ing with CUDA) to accelerate the PDPSO-IWO algo-

rithm for HW/SW partitioning should be discussed.

3) As the optimization approaches are widely used

in CAD&CG[62-65], videos[66-67] and images[68-70], the

PDPSO-IWO will be extended and used in these ar-

eas. 4) The algorithm proposed in this paper will be

used to solve more HW/SW partitioning models and

real projects such as MPSoC, coupled CPU-GPU and

high-level VLSI synthesis[71].
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