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Abstract Visual tracking is an important area in computer vision. How to deal with illumination and occlusion problems

is a challenging issue. This paper presents a novel and efficient tracking algorithm to handle such problems. On one hand, a

target’s initial appearance always has clear contour, which is light-invariant and robust to illumination change. On the other

hand, features play an important role in tracking, among which convolutional features have shown favorable performance.

Therefore, we adopt convolved contour features to represent the target appearance. Generally speaking, first-order derivative

edge gradient operators are efficient in detecting contours by convolving them with images. Especially, the Prewitt operator

is more sensitive to horizontal and vertical edges, while the Sobel operator is more sensitive to diagonal edges. Inherently,

Prewitt and Sobel are complementary with each other. Technically speaking, this paper designs two groups of Prewitt and

Sobel edge detectors to extract a set of complete convolutional features, which include horizontal, vertical and diagonal edges

features. In the first frame, contour features are extracted from the target to construct the initial appearance model. After

the analysis of experimental image with these contour features, it can be found that the bright parts often provide more

useful information to describe target characteristics. Therefore, we propose a method to compare the similarity between

candidate sample and our trained model only using bright pixels, which makes our tracker able to deal with partial occlusion

problem. After getting the new target, in order to adapt appearance change, we propose a corresponding online strategy

to incrementally update our model. Experiments show that convolutional features extracted by well-integrated Prewitt and

Sobel edge detectors can be efficient enough to learn robust appearance model. Numerous experimental results on nine

challenging sequences show that our proposed approach is very effective and robust in comparison with the state-of-the-art

trackers.
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1 Introduction

Visual tracking has a wide range of applications

such as intelligent surveillance, human interaction

and virtual reality[1]. Although many tracking algo-

rithms have been studied in recent years, it is still

a challenging problem to form a robust tracker be-

cause of illumination change[2-3], occlusion[4], defor-

mation and rotation[5]. In order to deal with such

problems, researchers focus on exploiting observation

model, such as boosting[6-7], structure SVM[8], sparse

representation[9-13] and subspace learning[14], which

can be divided into two categories: generative model

and discriminative model.

In general, generative trackers typically learn an ap-

pearance model by a generative process and then search

for the most similar target according to reconstruc-

tion error. IVT[14] incrementally learns a low dimen-

sional PCA subspace representation, which can effec-

tively model smooth pose variation. L1 tracker[9] as-

sumes that the target could be represented by a sparse

linear combination of target templates and trivial tem-

plates. After solving an l1-regularized least squares
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problem, the candidate sample with the smallest pro-

jection error is selected as the target. Through a track-

ing decomposition scheme, VTD[15] shows that the tar-

get can be represented by a linear combination of ob-

ject templates and trivial templates. Compared with

discriminative algorithms, such generative trackers of-

ten get more accurate location when the target changes

smoothly.

On the other hand, discriminative trackers usually

train a classifier to separate the target from the back-

ground. For classifier training, these trackers often crop

patches near the target location as positive samples and

crop patches far away from the target location as neg-

ative samples. Finally, such trackers select the sam-

ple with the maximum classification score as the tar-

get. Thanks to the improvement of machine learning,

several sophisticated algorithms have been applied to

tracking, such as boosting, SVM and Bayesian. OAB[6]

tracker uses multiple instance learning instead of tra-

ditional supervised learning and adapts the classifier

while tracking the object. Moreover, it selects the most

discriminating features for tracking resulting in stable

tracking results. STRUCK[8] presents a framework for

adaptive tracking based on structured output predic-

tion. It uses a kernelized structured output support vec-

tor machine with a budgeting mechanism as appearance

model for real-time applications. CT[16] trains appear-

ance model based on the features which are extracted

from multi-scale image feature space. It builds an on-

line update naive Bayesian classifier to separate the tar-

get from the background, which leads to a real-time

and accurate tracker. Compared with generative track-

ers, discriminative trackers are more robustness because

purely generative trackers cannot handle complicated

background well.

2 Related Work

To form a robust tracker, Wang et al.[1] stated that

the features used in tracking systems play the most im-

portant role. A good feature can significantly improve

the tracking performance even with a simple classifier.

There are many hand-crafted features used in track-

ing algorithms, such as local binary patterns[17], haar-

like features[18-19], contour features[20-23] and other

descriptors[24]. Recently, convolutional neural network

(CNN)[25-27] is widely used in many image processing

fields such as image classification, object recognition

and visual tracking. In their convolutional layer, fea-

tures are extracted by convolving with several filters,

which are trained from raw data offline with little hu-

man intervention.

However, although these convolved features are ro-

bust, the filter training process is time consuming and

the model trained using a large amount of general data

may not suit tracking specified target. To overcome

these weaknesses, we propose to use well integrated

first-order derivative edge gradients instead of CNN fil-

ters to extract convolutional features.

On one hand, for object tracking, the initial tar-

gets always have clear contour features which are ro-

bust to illumination change. On the other hand, in

image processing, first-order derivative edge gradients

are often used to extract contour by convolving them

with images. Among these first-order derivative edge

gradients, Prewitt and Sobel operators are two comple-

mentary gradient operators. Related studies in facial

expression detection show that the Prewitt operator is

more sensitive to horizontal and vertical edges while the

Sobel operator is more sensitive to diagonal edges[28-29].

Fig.1 presents a car under different light condi-

tions (red rectangles) and corresponding contour fea-

tures (green rectangles). In this figure, the contour

features are gained by convolving target image with

different Prewitt and Sobel operators. The yellow ovals

indicate the similar structure of these contour features,

which demonstrates that these features remain stable

even under different light conditions. Therefore, in this

paper, we integrate several Prewitt and Sobel operators

to extract convolved contour features which form the

appearance model of the target. The main contribu-

tions are listed below.

1) A novel appearance model based on multiple

contour features is proposed. To extract contour fea-

tures, we carefully select and integrate several Prewitt

and Sobel operators to convolve with the target im-

age. These contour features are robust to illumination

change, which makes our algorithm able to track the

target under complex light conditions.

2) We analyse and show that the bright parts of the

contour features could provide more important informa-

tion than dark parts. Therefore, we propose to mea-

sure the similarity between candidate samples and to

only use bright pixels in our trained appearance model.

Because occlusions are always smooth and have few

contours, this strategy could exclude obstructed areas

which help to solve partial occlusion problem.

3) After evaluating the target location at the end

of each frame, a corresponding incrementally update

method is presented to adapt appearance change, which

shows robustness in our experiment.
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Fig.1. Example of contour feature. This is a target car (red rectangle) under four different light conditions. Although each target
image has different shadow parts, their corresponding contour features (eight different contour features within the green rectangle)
have similar layout (for example, the yellow ovals), which demonstrates the robustness of contour feature to the illumination change.

3 Proposed Algorithm

Fig.2 summarizes the main steps of our algorithm.

In our tracker, before extracting features, every sample

should be warped to the same size. At the first step, fea-

tures are extracted by convolving the training images

with a bank of filters. These features are warped to-

gether and form a long feature vector. Red rectangles in

Fig.2(a) are the training images and their correspond-

ing convolved contour features. Second, features are ex-

tracted and warped from candidate samples in the same

way with the last step. Green rectangles in Fig.2(b)

are the candidate samples and their corresponding con-

volved contour features. Third, the confidence map is

formed by calculating the similarity between the ap-

pearance model and each candidate sample. Finally,

we gain the new target sample which has the maximum
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Fig.2. Main flow of our proposed algorithm. (a) Training images and their corresponding convolved contour features. (b) Candidate
samples and their corresponding convolved contour features.
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score in confidence map. At the end of each frame, to

adapt appearance change, we incrementally update our

model using the new target. Our tracker iteratively

performs these steps above to track the target frame by

frame.

3.1 Image Representation

In this paper, we aim to handle illumination prob-

lem. The initial appearance of a target always has a

clear contour, which is light-invariant and robust to il-

lumination change. On the other hand, features play an

important role in tracking, among which convolutional

features have shown favorable performance. Therefore,

we adopt convolved contour features to represent the

target. Generally speaking, first-order derivative edge

gradient operators are efficient in detecting contours

by convolving them with images. Especially, the Pre-

witt operator is more sensitive to horizontal and vertical

edges, while the Sobel operator is more sensitive to di-

agonal edges[28-29]. Inherently, Prewitt and Sobel are

complementary with each other. Technically speaking,

we design two groups of Prewitt and Sobel edge detec-

tors to extract a set of complete convolutional features,

which include horizontal, vertical, and diagonal contour

features.

In this subsection, we will introduce how to build

our appearance model which contains several convolved

contour features. Before extracting features, each sam-

ple x should be warped to the same size of m×m pixels

(the size of 32× 32 pixels is an empirical value in many

papers[9,11,14] and also in our paper). Next, contour

features are extracted by convolving these normalized

samples with several complete Prewitt and Sobel ope-

rators. These operators are listed in (1):

f1 =





−1 −1 −1
0 0 0
1 1 1



 , f2 =





−1 0 1
−1 0 1
−1 0 1



 ,

f3 =





0 1 1
−1 0 1
−1 −1 0



 , f4 =





−1 −1 0
−1 0 1
0 1 1



 ,

f5 =





−1 −2 −1
0 0 0
1 2 1



 , f6 =





−1 0 1
−2 0 2
−1 0 1



 ,

f7 =





0 1 2
−1 0 1
−2 −1 0



 , f8 =





−2 −1 0
−1 0 1
0 1 2



 ,

(1)

where f1,f2,f3,f4 are Prewitt operators and

f5,f6,f7,f8 are Sobel operators. These two-type gra-

dient operators are complementary because the Prewitt

operator is more sensitive to horizontal and vertical

edges than to diagonal edges while the reverse is true

for the Sobel operator. Therefore, horizontal, vertical

and diagonal edge contour features could be extracted

from these well integrated Prewitt and Sobel operators.

In order to illustrate how to combine our contour fea-

tures, we first give some notations. Given the i-th

operator fi and a patch x, the response is denoted as

(2):

hi (x) = fi ⊗ x, i = 1, ..., 8, (2)

where hi ∈ R
(m−w+1)×(m−w+1). Let H (x) =

(h1 (x) , ..., h8 (x)) denote features of patch x. Then

V (x) = vec (H (x)) is to vectorizeH(x), whereV (x) ∈

R
(m−w+1)2 is a long vector; w = 3 is the operator size.

At the initialization step, the target template is ini-

tialized to s = V (x∗

1), which is updated incrementally

to adapt appearance change, where x∗

1 represents the

target patch in the i-th frame.

3.2 Particle Filter

Our tracking process is driven by a particle fil-

ter framework. From the view of Bayesian estima-

tion, the tracking problem is regarded as an infer-

ence task in Markov model with latent variables. Let

xt = (cx, cy, sw, sh) denote the target state at frame

t, where cx and cy denote center location, and sw and

sh denote the scale at x and y orientation respectively.

Given a set of observed images I1:t = {I1, ...., It}, we

aim to estimate the state variable xt using Bayes’ the-

orem as (3).

p (xt|I1:t)

∝ p (It|xt)

∫

p (xt|xt−1) p (xt−1|I1:t−1) dxt−1, (3)

where p(xt|xt−1) denotes the dynamical model, and

p(It|xt) denotes the observation model which governs

the tracking process. In order to develop a robust

tracker for generic applications, the motion of particles

between two neighbor frames is designed by Brownian

motion. Each parameter in xt is modeled independently

by a Gaussian distribution around its former state. The

state transition between frames is modeled as:

p (xt|xt−1) = N (xt;xt−1,Ω) , (4)

where N is the Gaussian distribution symbol, and

Ω = diag (σx, σy, σw, σh) is a diagonal matrix (its ele-

ments are the variance corresponding to the state vari-

ables).
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3.3 Observation Model

In this subsection, we will discuss observation model

in details. First, we explain the motivation behind our

model by Fig.3. In Fig.3(b), the image patches bounded

in the yellow rectangle are the template features trained

using former evaluated targets; image patches bounded

in the red rectangle are the target features extracted

from Fig.3(a); image patches within the green rectan-

gle are the non-target features extracted from the green

area in Fig.3(a). We can see that the bright parts of the

image (yellow oval) could provide more useful informa-

tion than the dark parts to judge the target. Therefore,

to calculate the similarity, we propose a method to com-

pare the bright part of the contour feature image only.

At time step t, the target state is represented by a

set of particles a
(i)
t . To compare the similarity between

a particle a
(i)
t and our appearance model, we first trans-

late the particle into a gray scale and normalize it to

m×m.

To simplify the problem, we first define two func-

tions.

1) Function Ix = M(x) returns the index of which

the corresponding elements are lower than the median

value of vector x .

2) Function zero(A, I) is to set A(I) = 0, where A

is a vector and I is an index set.

Let z = zero (s, Is) and z
(i)
t = zero

(

V
(

a
(i)
t

)

, Is

)

,

and then the target state could be calculated by (5):

x∗

t+1 = argmax
a
(i)
t+1

O (z)×O
(

z
(i)
t

)

, (5)

where O (s) is the normalization function which pro-

cesses by subtracting the mean and doing l2 normali-

zation. Fig.3 shows why our proposed method could

deal with pose variation and occlusion problem. In

Fig.3, the bright part of the trained template is simi-

lar to the target patch (yellow oval) and dissimilar to

the non-target patch. When we compare the similarity

between the training template and target patch, only

the bright part is involved into calculating. At last, the

occluded part, which is always smooth without con-

tour (light blue oval), could be filtered out. Therefore,

although the target is occluded, our tracker can also

locate it. At the end of each frame, we set the new

probability distribution function of the particle as

p
(

xt|a
(i)
t

)

∝ exp

(

−
∥

∥

∥
O (z)−O

(

z
(i)
t

)∥

∥

∥

2

2

)

. (6)

Through normalizing and putting such probabilities

onto the search region of the t-th frame, we get the con-

fidence map in Fig.2.

However, object appearance often changes during

tracking. In this paper, we propose an online update

method to adapt appearance change. After getting the

new target, we update our model by (7):

s← λs+ (1− λ) s′, (7)

where s′ = V
(

x∗

t+1

)

, and λ is the learning rate. Higher

learning rate means aggressive model update, and vice

versa. The proposed tracking algorithm is summarized

in Algorithm 1.

4 Experiment and Analysis

In this section, we will discuss the experimental de-

tails and analyze results. To evaluate the robustness of

our tracker, we test it on several videos which are widely

used in other tracking papers.[7,16,30-37] These videos

are Bike, Car4, CarDark, David, David2, David3, Dog1,

(a) (b)

Fig.3. Example of how our approach works. (a) Frame of tracking sequence. (b) Features and template. The red rectangle represents
the target location in (a) and its corresponding convolutional features in (b). The green rectangle represents a non-target area in (a)
and its corresponding convolutional features in (b). The first row of yellow rectangle image in (b) is the trained template.
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Algorithm 1. Overview of Proposed Tracking Algorithm

Input:

Initialize at time step 1: t = 1; s = V (x∗

t
);

{

a
(i)
t

= x∗

1

}600

i=1
; (t+ 1)-th frame data

Other time steps: a
(i)
t

; s; (t+ 1)-th frame data

1: Each particle a
(i)
t

moves according to (4) and get the new particles a
(i)
t+1 at time step t+ 1

2: Calculate new target state x∗

t+1 according to (5)
3: Set the probability distribution function of these particles according to (6) and resample them
4: Update s according to (7)
5: Let t← t+ 1
Output:

New particles a
(i)
t+1 and s

FaceOcc1, Girl, Singer1, Trelis, and Woman. These

videos contain several special cases in real-world con-

text such as occlusion, blur, complex background, and

pose variation. Table 1 lists the characteristics of these

videos. In Table 1, complex background denotes that

the background is similar to the target; background in-

terference denotes that some background areas are con-

tained in the bounding box. Pose variation denotes

the heavily appearance change of the target. Scale

change denotes that the size of the target changes dur-

ing tracking. Illumination change denotes that the light

condition changes in the scene. To show our tracker’s

overall performance, we compare our tracker with sev-

eral other state-of-the-art trackers on these challenging

videos. These compared trackers are CT[16], DFT[30],

LOT[31], TLD[32], LSK[33], CSK[34], MIL[7], LSST[35],

RPT[36] and OAFT[37].

4.1 Experimental Setup

In our experiment, the object location in the first

frame is given and our model is trained in gray scale.

In our experiment, our tracker is running on MATLAB

(PC parameters: i5 4590 8 GB RAM 64-bit) with five

frames per second without any optimization. The para-

meters used in the particle filter framework are listed

below.

The size of normalized image m is set to 32; the

learning rate λ is set to 0.9, which controls the up-

date speed of our appearance model; particle transition

parameters are set to σx = 8, σy = 8, σw = 0.01 and

σh = 0.01; the number of particles is 600. Although

increasing particles’ number may result in a more ac-

curate location, the speed will trend to decrease.

4.2 Evaluation Methodology

To provide the comprehensive assessment of these

trackers, we use three indicators to evaluate perfor-

mance.

The first method is center location error (CLE),

which is defined as the Euclidean distance between the

center location of tracking results and ground truths la-

beled by hand. The number behind each tracker is the

AUC (area under the curve) value which demonstrates

the average distance error. However, the CLE method

is ineffective when a tracker drifts from the target.

The second method is overlap success rate plots

Table 1. Characters of Test Sequences

Complex Background Background Interference Occlusion Pose Variation Scale Change Illumination Change

Bike ×
√

×
√

× ×

Car4 × × × ×
√ √

CarDark
√ √

× ×
√ √

David × × ×
√ √ √

David2
√

× × × × ×

David3 × ×
√ √

×
√

Dog1 × × ×
√ √

×

FaceOcc1 × ×
√

× × ×

Girl × ×
√ √ √

×

Singer1
√

×
√ √ √ √

Treillis
√

× ×
√ √ √

Woman × ×
√ √

× ×
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(SR) which can evaluate the average efficiency of a

tracker. Before we introduce the SR method, let us

first define overlap score. An overlap score S is de-

fined as S = area(R∩G)
area(R∪G) , where R denotes the tracking

result region, G denotes the ground truth, ∩ and ∪ rep-

resent the intersection and union of these two regions

respectively, and area() is a function which returns the

number of pixels of a region. If S is larger than some

threshold, this frame will be labeled success; otherwise

it will be labeled failure.

The third method is precision error plots (PE) based

on CLE. If the CLE of a frame is lower than some

thresholds, this frame will be labeled success; otherwise

it will be labeled failure.

4.3 Experimental Results

Fig.4 shows the center error distance changes over

time. Fig.5 shows the SR at different thresholds rang-

ing from 0 to 1. Fig.6 shows the PE plots at different

thresholds ranging from 0 to 50. The numbers behind

each tracker’s name are also AUC values. Fig.7 shows

the average SR and PE plots among all test sequences.

Fig.8 shows some true tracking results of the compared

trackers and our tracker, which are analyzed in details

as follows.

Bike. In this sequence, the target bounding box con-

tains a large background area, which influences classi-

fier training. In this case, CT failed to distinguish the

object from the background and drift in frame #63.

Our tracker uses contour features to compare the simila-

rity between particles and our trained template, which

eliminates background disturbance. Even if the back-

ground area in bounding box is changing, the contour

feature of the target is stable. We can see from Fig.4

that CSK, RPT, OAFT and our tracker evaluate the

right object location and scale all the time.

Car4. In this sequence, the target car runs on a

road and passes under several foot bridges. The diffi-

culties of this video are the shadow and changing scale

of the target. Fig.1 demonstrates that the edge and the

layout of the car do not change much under different

illumination conditions. As shown in Fig.8, all track-

ers except ours drift to the background when the car

goes through foot bridge. It is because the contour fea-

tures are robust to illumination shadow change (frames

#195 and # 249). From Figs.4∼6, only our algorithm

can track the car all the time and achieve the highest

score beyond other trackers.

CarDark. The object car is running on the night and

ill-lit street. In Fig.8, many trackers drift heavily due

to poor light condition and complex background. Our

tracker is designed to handle illumination with contour

features. Therefore, even if light condition changes, the

contour features remain stable. As shown in Figs.4∼6,

OAFT and our method track the car steadily and

achieve the highest scores.

David. In this sequence, a man walks around in a

room. From time step #159 to time step #226, the tar-

get undergoes large appearance change due to scale and

pose variation. Several trackers drift or track a wrong

scale, but our tracker performs well. This is because

our update strategy could adapt such smooth appear-

ance change. As illustrated in Fig.5, TLD achieves the

highest score, and the following trackers are RPT and

ours.

David2. In this sequence, we track a man in a room

of which the background texture is complex. CT drifts

to the background at the beginning. After the target

moves into a region with complex background, LSK

and DFT drift in frame #508. However, the proposed

tracker does not drift in cluttered background. As il-

lustrated in Fig.4, our tracker achieves a higher score

(more than 0.9).

David3. In this sequence, the man is totally oc-

cluded by a tree twice during walking. As shown in

Fig.8, when the man goes through the tree, RPT, CT,

and MIL drift to the background. Other trackers, such

as DFT, LSST and CSK, also drift after the man turned

around. As we can see from Fig.5, our method achieves

the highest score.

Dog1. In this sequence, the target is a toy dog of

which the scale changes much. For example, from frame

#910 to frame #1184, the bounding box becomes big-

ger when the target gets closer to the camera. Many

trackers can track the correct location but wrong scale,

such as CSK, MIL and CT. In our experiment, the sam-

ples are normalized into the same size before feature

extraction step. Therefore although the scale changes,

the contour feature of the target remains stable. As

shown in Figs.4 and 5, LOT, LSK and our tracker can

track the target in both correct location and scale.

FaceOcc1. In this sequence, a woman has taken a

book in front of her face for a long time. As shown in

Figs.5 and 6, all trackers drift to some degree because

of heavy occlusion. Our tracker evaluates the similarity

only using the bright part, which makes it robust to the

occlusion problem (the same principle in Fig.3). As il-

lustrated in Figs.4 and 5, CSK, LSST and our tracker

achieve the highest score.

Girl. In this sequence, a girl sits on a chair with
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Fig.4. Center location errors. (a) Bike. (b) Car4. (c) CarDark. (d) David. (e) David2. (f) David3. (g) Dog1. (h) Faceocc1. (i) Girl.
(j) Singer1. (k) Trellis. (l) Woman.

a camera. During frame #130 and frame #265, she

moves her chair and turns herself a round. These ac-

tions cause scale change and self occlusion problem. Al-

though the girl’s head turns around, its contour features

change small, which makes our tracker still able to lo-

cate it. As illustrated in Figs.5 and 6, we can see that

only our tracker can track the girl well all the time, and

the average score is far ahead of others.

Singer1. The object in the Singer1 sequence changes

in scale and the illumination also changes tempestu-

ously. If a tracker could not cope with illumination

change, it is difficult to keep track of the object cor-
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Fig.5. Overlap success rate plots. (a) Bike. (b) Car4. (c) CarDark. (d) David. (e) David2. (f) David3. (g) Dog1. (h) FaceOcc1. (i)
Girl. (j) Singer1. (k) Trellis. (l) Woman.

rectly. Our algorithm is able to track the right object

accurately in this sequence because it represents the

target with illumination invariant features. As shown

in Fig.5, TLD, OAFT and our tracker could track the

target correctly in both location and scale.

Trellis. In this sequence, a man walks under a trellis

and shadows on his face change heavily. Some trackers,

such as RPT, MIL and LSST, drift because of shad-

ows (frames #385, #476 and #540). Our appearance

model involves illumination invariant contour features,

which remain stable when the shadow changes. There-

fore, our tracker can still track the target. It is shown
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Fig.6. Precision plots by center location errors. (a) Bike. (b) Car4. (c) CarDark. (d) David. (e) David2. (f) David3. (g) Dog1. (h)
FaceOcc1. (i) Girl. (j) Singer1. (k) Trellis. (l) Woman.

in Fig.4 that only LSK and our method can track the

correct object location. As illustrated in Figs.5 and 6,

our tracker achieves the second highest score.

Woman. In this sequence, a woman walks on a

street and goes through some cars. From frame #111 to

frame #165, when she walks on through the first white

car, all the trackers drift except ours, RPT and DFT.

Fig.3 explains why our tracker could deal with partial

occlusion problem well. It is shown in Fig.4 that our

tracker achieves the second highest score among all test

trackers.

In a short, the experimental results demonstrate



Kang Li et al.: Robust Visual Tracking Based on Convolutional Features 233

that the proposed tracker achieves a better performance

than other trackers among these typical videos.
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Fig.7. Average success and precision plots among all test se-
quences. (a) Success plots of TRE. (b) Precision plots of TRE.

5 Conclusions

This work constructed a set of complete contour fea-

tures by convolving an image with two groups of well

selected and integrated Prewitt and Sobel operators.

The bright parts of contour features could provide more

useful information than the dark parts. Therefore the

bright pixels of the image are used. This strategy en-

ables our algorithm to cope with partial occlusion prob-

lem. A number of experimental results showed that the

proposed approach achieved competitive performance

among state-of-the-art methods.

In the future, we will add deblurring ability. We

will explore sophisticated filters and integrate them by

using collaborative and parallel computing[38-40]. We

also try to extend the idea into related areas of com-

puter science[41-43].
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