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Abstract. ( , )k s SAT−  is the propositional satisfiable problem restricted to instances where each clause has 
exactly k distinct literals and every variable occurs at most s times. It is known that there exits an exponential 
function f such that for ( )s f k≤ , all ( , )k s SAT− instances are satisfiable, but ( , ( ) 1)k f k SAT+ − is already NP-
complete ( 3k ≥ ). Therefore, we call the function (.)f  critical function. Exact values of (.)f are only known 
for 3k =  and 4k = , and it�s open whether (.)f is computable. The best known lower and upper bounds 
on ( )f k  are (2 / )k kΩ  and (2 / )k kαΟ , where 4

3log 1 0.26α = − ≈ , respectively. In this paper, analogous to the 
randomized algorithm for finding two coloring of k − uniform hypergraph, we first present a similar 
randomize algorithm for outputting an assignment for a given formula. Based on it and by probabilistic 

method, we prove that, for every integer 2k ≥ , each formula F  in ( ,*)k CNF−  with at most 0.58 2
ln

kk
k

×  

clauses is satisfiable. In addition, by the Lovász Local lemma, we get a new lower bound of ( )f k , 

( 2 / )
ln

kk k
k

Ω , which improves the result (2 / )k kΩ ． 

Keywords: ( , )k s SAT− , NP-complete, randomize algorithm, probabilistic method. 

1. Introduction 
A literal is a propositional variable or a negated propositional variable. A clause C is a disjunction of literals, 

1( , , )mC L L= L , or a set of literals, 1{ , , }mL LL . A formula F  in conjunctive normal form ( CNF  ) is a 
conjunction of clauses, 1( )nF C C= ∧ ∧L , or a set of clauses, 1{ , , }nC CL . | |C  is the number of literal in the 
clause C . var( )F is the set of variables occurring in the formula F  and ( )lit F  is the set of literals over var( )F . 
It was observed by Tovey [1] that all formulas in (3,3) CNF−  are satisfiable, and the satisfiability problem 
restricted to (3,4) CNF− is already NP-complete. There was a generalization in Kratochvil�s work, where it is 
shown that for each 3k ≥ , there is some integer ( )s f k= , such that 

� all formulas in ( , )k s CNF−  are satisfiable, and 
� ( , 1)k s SAT+ − , the satisfiability problem restricted to ( , 1)k s CNF+ − , is already NP-complete. 
Therefore the critical function ( )f k  can be defined by the equation 

( ) max{ : ( , ) }f k s k s CNF UNSAT= − ∩ = ∅ . 
From [1], it follows that (3) 3f =  and ( )f k k≥  for 3k > . However it is open whether f  is computable. The 
upper and lower bounds for ( )f k , 5, ,9k = L , have been obtained in [2, 3, 4]. For larger values of k , the best 
known lower bound, a consequence of Lovász Local Lemma, is due to Kratochíl [5]. 

( ) 2 /kf k ek ≥   . 

The best known upper bound, due to Savickỳ and Sgall [6], is given by 
( ) (2 / )kf k O kα≤ . 
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where 4
3log 1 0.26α = − ≈ . 

The probabilistic method is not about probabilistic algorithms[7, 8], which give the right answer with 
high probability but not with certainty, nor about Monte Carlo methods, which are simulations relying on 
pseudo-randomness. 

The probabilistic method is a non-constructive method primarily used in combinatorics and pioneered by 
Paul Erdős, for proving the existence of a prescribed kind of mathematical object. This method has now been 
applied to other areas of mathematics such as computer science, number theory, linear algebra, and real 
analysis. Common tools used in the probabilistic method include Markov�s inequality, the Chernőff bound, 
and the Lovász Local lemma and so on. 

In this paper, analogous to the randomized algorithm for finding two coloring of k -uniform 
hypergraph[3, 9, 10, 11, 12], we present one for outputting an assignment for formulas in ( ,*)k CNF− . And 
then, for each formula, we can create a probability space, the samples of which are the assignments derived 
randomly from the randomized algorithm. We show, in this kind of probability space, for each formula, the 
probability of formula with a truth assignment is positive．Therefore, by the probabilistic method, the 
formula is satisfiable by such assignment. Besides, based on the randomized algorithm, we get, by applying 

the Lovász Local lemma, the lower bound of ( )f k , ( 2 / )
ln

kk k
k

Ω , which improves the previous result (2 / )k kΩ . 

2. Basic notations 
Let 1{ , , }mF C C= L  be a CNF  formula with variables set 1var( ) { , , }nF x x= L . An assignment to a formula F  is a 
map : var( ) {0,1}Fτ  →  We define ( ) : 0xτ ¬ =  if ( ) : 1xτ =  and ( ) : 1xτ ¬ =  otherwise. A variable x  occurs in a clause 
C  if x C∈  or x C¬ ∈ . Further, for C F∈  we define ( ) : max ( )

x C
C xτ τ

∈
=  and ( ) : min ( )

C F
F Cτ τ

∈
= . A formula F  is 

satisfied by an assignment τ  if ( ) 1Fτ = . A formula F  is satisfiable if there exits a truth assignment which 
satisfies F ; otherwise F  is called unsatisfiable. ( )ASS F  is the set of all assignments of F  on var( )F ; 

For ( )ASS Fτ ∈ , ( ) { : ( ) 1}TC F C F Cτ τ= ∈ = ; ( ) { : ( ) 0}FC F C F Cτ τ= ∈ = . 

For C F∈ , ( ) { var( ) : ( ) 1 ; ( ) 1 }TV C x C x if x C x if x Cτ τ τ= ∈ = ∈ ¬ = ¬ ∈ ; ( ) var( ) ( )FV C C TV Cτ τ= − . 

For var( )x F∈ , ( ) { ( ) : ( )}TC x C TC F x TV Cτ τ τ= ∈ ∈ ; ( ) { ( ) : var( )}FC x C FC F x Cτ τ= ∈ ∈ . 

Besides, we use ( , )F C τ  to denote the event �clause C  is unsatisfiable in assignment τ  �; and ( , )T C τ  is 
reverse to ( , )F C τ . 

We use SAT  to denote the class of all satisfiable formulas and UNSAT  to the class of unsatisfiable 
formulas. We also use k CNF−  to denote the class of CNF formulas where the length of each clauses is no 
more than k . ( , )k s CNF−  is a class of the conjunctive normal form formula where each clause� length is 
exactly k  and the occurrence number of each variable is at most s . For conveniency, we define 

1

( ,*) ( , )
i

k CNF k i CNF
+∞

=

− = −U ． 

3. The randomize algorithm  
In this section, a useful tool, which will be applied following, is the probabilistic method. Roughly speaking, 
the method works as follows: Trying to prove that a structure with certain desired properties exists, one 
defines an appropriate probability space of structures and then shows that the probability of an object 
selected uniformly from the space satisfying the desired properties is positive or falsifying them is less than 1. 

For a ( ,*)k CNF−  formula F  with variables set 1var( ) { , , }nF x x= L , we first define two following functions. 

The function : var( ) [0,1]ord F  → . For each var( )x F∈ , the value of ( )ord x  is randomly picked from 
[0,1] independently. The purpose of function ord  is to give a random order among variables set var( )F (please 
note that with probability 1, no two variables were assigned same values). 

The function : var( ) {0,1}b F  → . For each var( )x F∈ , ( ) 1b x =  with probability p  and ( ) 0b x =  with 
probability1 p− . p is a parameter the value of which will be presented properly later. 
The algorithm: 
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Input: a ( ,*)k CNF−  formula F  with variables set 1var( ) { , , }nF x x= L . 
Output: an assignment *τ for formula F . 
Step 1. Generate a random assignment 0τ by choosing 0 ( )xτ  to be 0 or 1 with probability 1/2, 

independently for each variable var( )x F∈ . 
Step 2. For each var( )x F∈ , we get the values of ( )ord x  and ( )b x  independently. Let 1, , nx xL be an 

increasing variables sequence ordered in values of (.)ord . Next | var( ) |n F=  steps are reassignment steps based 
on the values of (.)ord  and (.)b . 

Step 3. If 
0 1( )FC xτ ≠ ∅  and 1( ) 1b x = , then flip the value of 1x . Otherwise, go to next step. Let the resulting 

assignment be 1τ ．(Please note if the value of ix was not flipped, then 1i iτ τ −= for 1, ,i n= L .) 

Step 4. If 
0 12( ) ( )FC x FC Fτ τ∩ ≠ ∅  and 2( ) 1b x = , then flip the value of 2x . Otherwise, go to next step. Let the 

resulting assignment be 2τ . 
... � 
Step n+2. If 

0 1
( ) ( )

nnFC x FC Fτ τ −
∩ ≠ ∅  and ( ) 1nb x = , then flip the value of nx . Let the resulting assignment 

be *τ , output *τ and stop the algorithm.                                                                                       
Remark. The purpose of defining the functions of (.)ord and (.)b  is to control the reassignment steps. 

More precisely, they can avoid the situation of some previously-processed variables reassigning their values 
again. The notation 

0 1
( ) ( )

iiFC x FC Fτ τ −
∩ ≠ ∅  means there exit some clauses, which contain the variable ix  

making their falseness in the assignment 0τ , are still false in the new assignment 1iτ − . 

For ( ,*)F k CNF∈ − , a random assignment 0 ( )ASS Fτ ∈  is generated in Step 1, and by values of 
(.)ord and (.)b , the algorithm processes reassignments from Step 3 to Step n+2. At the final step, the result 

assignment *τ  is outputted concerned with the values of (.)ord  and (.)b .  

Thus for formula F , we define a dual structure ( , )FF S ．where 
* *{ : lg }FS is derived randomly from the a orithmτ τ= ． 

For the structure, we want to know, whether there is an assignment *
FSτ ∈  satisfying F . To solve this 

question, Based on the probabilistic method, a proper probability space ( , , )F FS PΩ = ℜ is defined firstly, where 
ℜ  is aσ -algebra on FS  and P  is a measure on ℜ the values of which are concerned with the values of (.)ord  
and (.)b . To prove there exits an assignment satisfying formula, we just need to prove, in the probability 
space FΩ , for an assignment *τ  picked uniformly from FS , the probability of the assignment *τ  failing 
satisfying formula F is less than 1. Formally,  

*
*Pr[ ( ) 0] Pr[ ( ) ] 1F FC F

τ
τ = = ≠ ∅ < . 

Based on above discussions, we begin estimating the probability of the event that there exits a clause 
C F∈  which is false in the random assignment *

FSτ ∈ . We have two following cases based on whether or not 
at least one variable whose value was reassigned during the reassignment steps. 

Case 1. C  is false in both 0τ  and *τ , that is the value of all the variables in C  are not flipped during 
whole reassignment steps. We say that event ( )A C  takes place. Formally,  

*
0( ) ( , ) ( , )A C F C F Cτ τ= ∧ . 

In fact, it is the event of ( ) 0b x = for each var( )x C∈  which triggers ( )A C . 
Case 2. C  is true in 0τ , but becomes false during the reassignment steps. That is, in some reassignment 

steps, every true literal of C  has been changed false. Let x  be the last variable, the literal of which is true in 
C  in assignment 'τ , to change its value. There must be at least one clause 'C C≠  such that var( ') var( )x C C∈ ∩ , 

0
' ( )C FC xτ∈  and 'C  was continued being false until x  was considered and ( ) 1b x = , And then C  become false 

in the result assignment after flipping the value of x because of 'C  . we denote by ( , ')B C C  the event of 'C  
making C  false. Formally, 
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0' ' '( , ') ( var( ) var( ') : ( ) ( ) 1) ( var( ) \ { }: ( )) ( ' ( ) ( ))B C C x C C x TV C b x y C x y TV C C FC F FC xτ τ τ τ= ∃ ∈ ∩ ∈ ∧ = ∧ ∀ ∈ ∉ ∧ ∈ ∩ . 
We have following lemma. 
Lemma 1. If C F∈  is false in *τ , then at least one of ( )A C  or ( , ')B C C  takes place for some ' \ { }C F C∈ .  
Thus, to bound the probability that there are some false clauses in *τ , it is enough to bound the 

probabilities of the events: : ( )C F A C∃ ∈  and , ' : ( , ')C C F B C C∃ ∈ . The following three claims will help us 
estimate the probabilities of these events. 

Claim 1. Pr[ ( )] 2 (1 )k kA C p−= − . 
Proof: Since C  is false in both 0τ  and *τ , that is the value of all the variables in C  are not flipped 

during whole reassignment steps，we have   

0( ) ( , ) ( var( ) : ( ) 0)A C F C x C b xτ= ∧ ∀ ∈ = . 

Therefore, Pr[ ( )] 2 (1 )k kA C p−= −  is correct.                                                                                                       
We also have following claim. 
Claim 2. If

0 0
| ( ) ( ') | 1TV C FV Cτ τ∩ > , then Pr[ ( , ')] 0B C C = . 

Proof: Suppose 
0 0
( ) ( ') { , '}TV C FV C x xτ τ∩ =  and ( ) ( ')ord x ord x> . Then the value of 'x  will be flipped before 

the value of x will be done. Let the result assignment be 'τ  after flipping the value of 'x . As a result, 
0

' ( )C FC xτ∈ , but '' ( )C FC Fτ∉ . Therefore, 'C can not make C false by the algorithm.                                      

Supposing
0 0
( ) ( ') { }TV C FV C xτ τ∩ = , by the definition of ( , ')B C C , we have two following conditional events 

which trigger ( , ')B C C : 
! 1

0 0 0( , , ') ( , ) ( { , }, ) ( , ) ( (var( ) { }) : ( ) 1)S C C T C F C S x x T S x S x b xτ τ τΦ ≡ ∧ − − ¬ ∧ ∧ ∀ ∈ ∪ = . 
Where { , }S C x x⊆ − ¬ . The event means, C and S , some sub-clause of C , are true in assignment 0τ but not 
for { , }C S x x− − ¬  and each variable in var( ) { }S x∪ owns qualification for reassignment. Obviously, if ( , ')B C C  
holds, then the event 1( , , ')S C CΦ  must hold for some sub-clause { , }S C x x⊆ − ¬ .  
! 2 ( , , ') ( ' var( ), ( ') ( )) ( ' var( ') { }) : ( ( ') ( ) ( ( ') 0))S C C x S ord x ord x x C x ord x ord x b xΦ ≡ ∀ ∈ < ∧ ∀ ∈ − > ∨ = . 

The event means, the variable x is the last one in var( )C  performing reassignment and every variable 
in var( ') { }C x− processes reassignment after x does, or doesn�t own qualification at all.  

Thus, if we define * 1 2( , ') ( , , ') ( , , ')B C C S C C S C C= Φ ∧ Φ , then the event *( , ')B C C  triggers ( , ')B C C happening. 
Thus, to bound the probability of the event ( , ')B C C , we just only need to do it for the event *( , ')B C C .  

Claim 3. If 
0 0
( ) ( ') 1TV C FV Cτ τ∩ = , then * 2 1Pr[ ( , ')] 2 kB C C p− −≤ . 

Proof: Suppose 
0 0
( ) ( ') { }TV C FV C xτ τ∩ =  and ( )ord x w= . 0Pr[ ( ', )] 2 kF C τ −= ; 

1
0 0Pr[ ( { , }, ) ( , )] 2 kF C S x x T Sτ τ −− − ¬ ∩ = ; | | 1Pr[ ' var( ) { }: ( ') 1] Sx S x b x p −∀ ∈ ∪ = = ; 

| |Pr[ ' var( ) : ( ') ( )} Sx S ord x ord x w∀ ∈ ≤ = ;  1Pr[ ' var( ') { }: ( ') ( ) ( ') 0] (1 )kx C x ord x ord x b x wp −∀ ∈ − ≤ ∨ = = − . 

Thus, by the definition, * 2 1 | | 1 | | 1Pr[ ( , ')] 2 (1 )k S S kB C C p w wp− + − −= − . On integrating over w  and summing over all S , 
we obtain 

1 12 1 1 1

0
0

Pr[ ( , ')] 2 (1 )
k

k l l k

l

k l
B C C p w wp dw

l

−
− − + −

=

− 
≤ − 

 
∑ ∫   

112 1 1

0
0

2 (1 ) [ ]
k

k k l l

l

k l
p wp p w dw

l

−
− − −

=

− 
= −  

 
∑∫  

12 1 1 1
0

2 (1 ) (1 )k k kp wp wp dw− − − −= − +∫  
12 1 2 1
0

2 (1 ( ) )k kp wp dw− − −= −∫  
12 1
0

2 1k p dw− −≤ ∫  
2 12 k p− −= .                                                                                                

From Claim 1, we have 
Pr[ : ( )] | | 2 (1 )k kC F A C F p−∃ ∈ ≤ × − . 
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From Claim 2, 3, we have 
2 2 1Pr[ , ' : ( , ')] | | 2 kC C F B C C F p− +∃ ∈ ≤ × . 

By lemma 1, for the random assignment *
FSτ ∈ , we have 

*
2 2 1Pr[ ( ) ] | | 2 (1 ) | | 2k k kFC F F p F p

τ
− − +≠ ∅ ≤ × − + × .                                               (1) 

Now we just need to search some conditions to satisfy above inequality less than 1. Then the conclusion of 
the formula F  owning a true assignment can be gotten. Thus we have following theorem. 

Theorem 1. Let F  is a ( ,*)k CNF−  formula with at most 0.58 2
ln

kk
k

×  clauses, then for all 2k ≥ , F  is a 

satisfiable formula. 
Proof:  Let | | 2kF l= . Then the inequality of (1) becomes 

*
2Pr[ ( ) ] (1 ) 2kFC F l p l p

τ
≠ ∅ ≤ − + . 

For 0 1ε< < , set (1 )
ln
kl
k

ε= −  , (1/ 2)ln /p k k= . And then we have  

*
2Pr[ ( ) ] (1 ) 2kFC F l p l p

τ
≠ ∅ ≤ − +  

2ln(1 ) (1 ) (1 )
ln 2

kk k
k k

ε ε= − − + −  

                                                            ln(1 )[1 ( (1 ) )]
ln 2

kk k
k k

ε ε= − + − −                                                         (2) 

 Set ln( ) (1 )
ln 2

kk kg k
k k

= − . ( )g k  is a decreasing function on k . Since (2) 1.15g < , ( ) 1.15g k <  is correct for 

all 2k ≥ . By analysis (2), set 0.42ε =  which is the minimal number satisfying the inequality of (2)<1 forany 

2k ≥ . Therefore (1 )
ln
kl
k

ε= − 0.58
ln
k
k

= ×  is the maximal number satisfying the inequality of (2)<1 for any 

2k ≥  . By the probabilistic method, we have proven the theorem.                                                   

4. The lower bound of f(k) 
Let F  be ( ,*)k CNF−  formula, if the parameter s , the maximal occurring number of variables in F , is not 
more than f(k), then each formula in (k, s)−CNF is satisfiable. To bound (.)f , we introduce a useful 
parameter of F : overlap . 

For each clause C F∈ , the overlap of C , denoted by cd , is defined by |{ ' \ { }: var( ) var( ') } |cd C F C C C= ∈ ∩ ≠ ∅ . 
The overlap of F  is the maximal cd  for C F∈ , denoted by d . We first present the upper bound of d  within 
which every ( ,*)k CNF−  formula is satisfiable. Then we conclude the lower bound of ( )f k  based on the 
relation between parameters s  and d . 

We will apply a special case of Lovász Local lemma, which shows a useful sufficient condition for 
simultaneously avoiding a set 1 2, , , NA A AL  of �bad� events: 

Theorem 2. Suppose events 1 2, , , NA A AL  are given. Let 1 2, , , NS S SL  be subsets of [ ] {1,2, , }N N= L such that 
for each i , iA is independent of the events { : ([ ] )}j iA j N S∈ − . Suppose that [ ]i N∀ ∈  : (1) Pr[ ] 1/ 2iA < , and (2) 

Pr[ ] 1/ 4
i

j
j S

A
∈

≤∑ . Then
[ ]

Pr[ ( )]i
i N

A
∈

¬∧ > 0. 

Remark. Often, each i N∈ will be an element of at least one of the sets jS ; Therefore, Pr[ ] Pr[ ]
j

i j
i S

A A
∈

≤ ∑ . 

Thus, it clearly suffices to only verify condition (2) of Theorem. 
Suppose F  is a ( ,*)k CNF−  formula with overlap 2kd λ= . Let *τ  be the random assignment obtained by 

above algorithm. By lemma 1, if we can simultaneously avoid the following events, then *τ  will be a valid 
truth assignment of F : 

{ ( ) : } { ( , ') : , ' }A C C F B C C C C F∈ ∪ ∈ . 



P. Gong, et al: New Lower Bound of Critical Function for (k, s)-SAT 
 

JIC email for contribution: submit@jic.org.uk 

8

In Claim 2 and 3, we observed that the event ( , ')B C C  holds only if 
0

| ( ) var( ') | 1TV C Cτ ∩ =  and the event 
*( , ')B C C  holds. Thus, it is enough if we can simultaneously avoid the following two types of events: 

(a) Type 1 events:{ ( ) : }A C C F∈ . 
(b) Type 2 events:

0 0
{ ( , ') : , ' | ( ) ( ') | 1}B C C C C F TV C FV Cτ τ∈ ∧ ∩ = . 

We call above two types events bad  events. 
For a bad event B . Let ( )S B  be the set of all bad events at least one of whose argument has a non-empty 

intersection with at least one argument of B . Formally, ( ) { ( ') : ' var( ') var( ) }S B A C C F C C= ∈ ∧ ∩ ≠ ∅  if ( )B A C= ; 
0 0 0 0 0 0( ) { ( , ') : , ' ((var( ) var( ')) (var( ) var( ')) )}S B B C C C C F C C C C= ∈ ∧ ∪ ∩ ∪ ≠ ∅  if ( , ')B B C C= . Thus, as discussed above, 

B  is independent of any events outside ( )S B . Thus to apply Theorem 2, we need to bound the sum of 
probabilities of events in ( )S B . To do these, we will first bound the number of events of each type in ( )S B , 
then we will use Claim 1 and Claim 3 to bound their probabilities. 

Claim 4. For all bad events B , ( )S B  has at most 2d  events of type 1 and at most 24d  events of type 2. 
Proof:  Suppose C  and 'C are the arguments of B  (we will take C  = 'C  if B  is a type 1 event). The only 

events of type 1 that are in ( )S B  correspond to clauses that intersect either C  or 'C . There are at most 2d  
such clauses by the definition of overlap; 

For a type 2 events with arguments 0 0( , ')C C  to be in ( )S B , at least one of 0C  and 0 'C must intersect at least 
one of C  and 'C ; furthermore, 0C  and 0 'C  must themselves intersect. It follows that there are at most 24d  
possibilities for 0 0( , ')C C .                                                                                                                           

Now, we can apply Theorem 2 to these bad events. 

Claim 5. Suppose 2kd λ= , where 0.1
ln
k
k

λ ≤  and 2k ≥ , then for any bad events B ,
' ( )

Pr[ '] 1/ 4
B S B

B
∈

≤∑ . 

Proof: 
               2

' ( )
Pr[ '] 2 2 (1 ) 4k k

B S B
B d p d p−

∈
≤ × − +∑ 22 (1 ) 8kp pλ λ= − +  .                                           (3) 

If (1/ 2)(ln ) /p k k= , 0ε >  and 1/ 4(1 )
ln
k
k

λ ε= − , the equation 

(3) 1/ 4(1 )(2 ( ) (1 ))g kε ε= − + −  

Please note that ln( ) (1 )
ln 2

kk kg k
k k

= −  and it is a decreasing function. It is enough to just choose a proper ε  to 

make 
                                                             (1 )(2 ( ) (1 )) 1g kε ε− + − < .                                                                  (4) 

We choose (1 ) 0.37ε− =  which is maximum number satisfying the inequality of (3) when 2k ≥ . Since ( )g k is a 
decreasing function, for any 2k ≥ , Therefore, when  

1/ 4(1 ) 1/ 4 0.37 0.1
ln ln ln
k k k
k k k

λ ε= − ≤ × ≤ × , 

The inequality of (4) < 1/4 is always correct. Thus, the claim is correct.                                                     
We have thus established that condition (2) of Theorem 2 holds if d  is chosen suitably. As remarked 

before, this implies that condition (1) holds as well. Thus, by the theorem 2, we get following theorem. 

Theorem 3. For a formula F  in ( ,*)k CNF− , if the overlap of it is at most 0.1 2
ln

kk
k

× × , then F is a 

satisfiable formula.                                                                                                                                         
Now, we study the connection between the maximal occurring number of variable of F  and the overlap 

of F  by following lemma. 
Lemma 2. For a formula ( ,*)F k CNF∈ − , suppose the parameters of s and d  are the maximal occurrence 

number of variable in F  and the overlap of F , respectively.  Then / 1s d k≥ + . 
Proof:  Let a clause 0C F∈ , 0| |C k= . For any variable x  in 0var( )C , ( ) { : var( )}C x C F x C= ∈ ∈ . Obviously, 
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0 0( ) { : var( ) var( ) } { }C x C F C C C⊆ ∈ ∩ ≠ ∅ ∪ and
0

0 0
var( )

( ) { : var( ) var( ) } { }
x C

C x C F C C C
∈

= ∈ ∩ ≠ ∅ ∪U . 

Thus 

0

0 0
var( )

| ( ) | | { : var( ) var( ) } { }
x C

C x C F C C C
∈

= ∈ ∩ ≠ ∅ ∪U . 

That is, 
                                                                         

0var( )
| ( ) | 1

x C
d C x

∈
= −U .                                                                (5) 

For each two variables 0, ' var( )x x C∈ , 0 0{ } ( ) ( )C C x C x⊆ ∩ . By the principle of inclusion and exclusion, 

  
1 2

0 10 var( ) 2 2var( )
| ( ) | | ( ) | ( 1) | ( ) ( ) ( ) |

i
i

k
i

i i i
x C i i i kx C

C x C x C x C x C x
∈ = ≤ ≤ ≤ ≤∈

= − − ∩ ∩∑ ∑ ∑
L

LU .                        (6) 

Since 

0 1var( ) 2 2
(6) | ( ) | ( 1) 1

i

k
i

x C i i i k
C x

∈ = ≤ ≤ ≤ ≤
≤ − −∑ ∑ ∑

L

 

0var( ) 2
| ( ) | ( 1)

k
i

x C i

k
C x

i∈ =

 
= − −  

 
∑ ∑  

0var( )
| ( ) | ( 1)

x C
C x k

∈
= − −∑  

( 1)k s k≤ ⋅ − − . 
By (5), we have ( 1) 1d k s k k s k≤ ⋅ − − − = ⋅ − . Therefore, / 1s d k≥ +  is correct.                                                  

By Theorem 3 and lemma 2, we have following theorem. 

Theorem 4. ( ) ( 2 / )
ln

kkf k k
k

= Ω . 

5. Conclusion 
The key gadgets applied in this paper are probabilistic method and Lovász Local lemma. Based on them, in 
section 3, we first got the result about the ( ,*)k CNF−  formulas� satisfiability and the number of clauses. In 
section 4, we first study the close connection between ( ,*)k CNF−  formulas� satisfiability and the parameter 
of overlap. And then, by the lemma 2, we got the new lower bound of critical function ( )f k  for ( , )k s SAT− . 
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