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Abstract. In this paper an interesting property of the restarted FOM algorithm for solving large 
nonsymmetric linear systems is presented and studied. By establishing a relationship between the 
convergence of its residual vectors and the convergence of Ritz values in the Arnoldi procedure, it is shown 
that some important information of previous FOM(m) cycles may be saved by the iteration approximates at 
the time of restarting, with which the FOM(m) cycles can complement one another harmoniously in reducing 
the iteration residual. Based on the study of FOM(m), two polynomial preconditioning techniques are 
proposed; one is for solving nonsymmetric linear systems and another is for forming an effective starting 
vector in the restarted Arnoldi method for solving nonsymmetric eigenvalue problems. 

Keywords: nonsymmetric linear systems, nonsymmetric eigenvalue problems, iterative methods, FOM, 
Arnoldi’s method, restarting; polynomial preconditioning. 

1. Introduction 
The Arnoldi method is an orthogonal projection onto the Krylov subspace defined as 

},,,,{),( 12 vAvAAvvAvK mm −= L  

for a nonsymmetic matrix nnRA ,∈ . The procedure was introduced in 1951 as a means of reducing a dense 
matrix into Hessenberg form. Arnoldi introduced this method precisely in this manner and he hinted that the 
process could give good approximations to some eigenvalues if stopped before completion. It was later 
discovered that this strategy lead to a good technique for approximating eigenvalues of large sparse matrices, 
see [9]. 

Algorithm 1:  Arnoldi for eigenvalue problems with restarting 
(1) Start: Choose a starting vector and normalize for ; 1v
(2) Arnoldi iteration: For  do mj ,,2,1 L=
    jiAvvh jiij ,,2,1),,( L==

    ∑ =−= j
i iijjj vhAvw 1

    jjh ,1+ = |||| jw
   jjjj hwv ,11 ++ =  

(3) Compute approximate eigenpairs: Let  be the mH mm × upper-Hessenberg matrix whose nonzero 
entries are defined in the Arnoldi iteration. Let  be the mV mn ×  matrix whose columns are  
through . Compute eigenpairs  of  as desired. The  is a Ritz value and 

 is the associated Ritz vector. 

1v
mv },{ )(

i
m

i gλ mH )(m
iλ

imi gVu =
(4) Restart: Residual norms can be checked for convergence. If needed, choose a new starting vector for 

 and go to (2). 1
The Arnoldi method was also extended to solve nonsymmetric linear systems in 1981 by Saad [10]. 

Consider the linear systems . The resulting algorithm takes the form: 

v

bAx =
Algorithm 2: Arnoldi for linear systems with restarting 
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(1) Start: Choose  and compute 0x 00 Axbr −= . Let |||| 0r=β  and β01 rv = . 
(2) Iterate: Perform  steps of the Arnoldi iteration with the starting vector . m 1v
(3) Form the approximate solution: 

mx = 0x + mm yV , 

where  is the solution of my 1eyH m β= . 
(4) Restart: Compute the residual norm , if satisfied then stop, else let , |||| mr mxx =0 |||| mr=β , 

βmrv =1 , and go to (2). 
The two algorithms described above are closely related. In order for a clear statement, the Arnoldi 

method for solving linear systems is referred to as the full orthogonalization method (FOM). Restarting is 
generally needed to reduce storage requirements and orthogonalization costs of the two algorithms. It is one 
of the most important strategy in successfully carrying out the Arnoldi method. However, restarting leaves 
many things unknown to us. It seems that some classical results of the unrestarted method can not be directly 
applied to its restarted scheme. For example, a relationship established in [2,4] shows that the unrestarted 
FOM can never beat GMRES [12] in term of the convergence of residual norm. However, it is observed that 
when restarted, FOM(m) may yield much rapider convergence than GMRES(m) with the same restart 
frequency m in some cases, see [14], [18]. Observations like this indicates that we should present a new view 
to the restarted Arnoldi method. 

In this paper we mainly present a global property of the restarted Arnoldi method for solving 
nonsymmetric linear systems. By establishing a relationship between the convergence of FOM(m) residual 
vectors and the convergence of Ritz values in the Arnoldi procedure, it will be shown that some important 
information of previous FOM(m) cycles may be saved by the iteration approximates at the time of restarting, 
with which the FOM(m) cycles can complement one another harmoniously in reducing the iteration residual. 
The same property was first observed for the restarted GMRES algorithm [17], and has attracted wider 
interest recently [1, 15, 19, 20]. 

In Section 2 the global property of FOM(m) is described. In section 3 two applications of the new 
property of FOM(m) are discussed. In Section 4 some numerical tests are reported. Finally, in Section 4 we 
draw conclusions. 

2. A global property of FOM(m) 
It is easy to show that the FOM residual  is a member of , and hence it can be written as a 
kth-degree polynomial in A, acting on : 

mr ),( 01 ArKm+

0r

0)( rApr mm = , 

where  is known as “FOM residual polynomial”, satisfying )(zpm 1)0( =mp . The following lemma [16, Lemma 

1.5] reveals a fundamental relationship between FOM and the corresponding Arnoldi procedure for eigenvalue 
problems (i.e., both of them start with the same initial vector ||||/ 001 rrv = ). 

Lemma 1. Assume that FOM converges steadily. Then the (0)( ≠m
iλ mi ,,2,1 L= ) and FOM residual 

polynomial  satisfies )(zpm
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When inserted in FOM( ), the Arnoldi procedure for eigenvalue problems will also be restarted. 
However, since its starting vectors are taken as the iteration residuals of FOM( ), it is not guaranteed that 
the Ritz pairs may continuously converge. Nevertheless, what we are really interested in is how closely Ritz 
values approximate the corresponding eigenvalues in each of the FOM( m ) cycles. Then the modulus of 

 on the spectrum of 

m
m

)(zpm A  can be estimated according to (1). 

We assume for simplicity that A  and  are all diagonalizable. Let  be the orthogonal projector on 
 and 

mH mP
),( 0 ArKm nii ,,2,1}{ L=ϕ  be the normalized eigenvectors of A . The following result is an immediate 

consequence of [5, Theorem 3.7]. 
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Lemma 2. Let ||)(|| mmm PIAP −=γ ,  and . 

Assume 
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||)(|| imPI ϕ−  to be small enough. Then there exists an eigenvalue  of  such that )(m
iλ mH
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Now let us estimate ||)(|| imPI ϕ− . The initial vector  is written as . The following 

lemma was established in [9]. 
0r jjn

jr ϕα10 =∑=

Lemma  3.  Assume that 0≠iα  and let n
ijji ≠=∑= ,1ξ |||| ij αα . Then  
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Note that for given m ,  is fixed. Then the degree of convergence of Ritz values will be reflected in the 
scalar 

)(m
iε

iξ .  

Define “product polynomials” of FOM(m) as 
LL ,2,1),()()()( 1,1,, == − szpzpzpz msmsmsπ , 

where  is the residual polynomial of the ),,2,1(),(, sjzp jm L= j th FOM(m) cycle. With the previous 
preliminaries, we establish the main result below, which is an explicit polynomial characterization of 
FOM( ). m

Theorem 4. Assuming FOM( ) starts with  and m jjn
jr ϕα10 =∑= 0≠iα , with a proper order of  

we will have 
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where the scalars with the subscript or superscript ( ) are all associated with the m s th cycle of FOM( ). m

Proof:  It follows from  that . Then =− msr )1( 01 )( rAs−π jjsjn
jmsr ϕλπα )(11)1( −=− ∑=
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In (2),  is independent of the product polynomials of FOM(m). We assume also for simplicity that 
 are uniformly bounded with a reasonably small bound (for example, when m  is taken to be 
imF ,

niimF ,,2,1, }{ L=
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large enough, ,  and  may be all modest scalars). A global property of FOM(m) is 
interpreted with the following two remarks of Theorem 4. 

|||| imP ϕ )(m
iε mγ

Remark 1. When  we have 1=s

||

||
|)(| ,1

,1,
i

jn
ijj

imim Fp
α

α
λ ≠=∑

≤ . 

If the initial vector  of one FOM cycle is nearly deficient in the i th eigenvector component, i. e., 
 for 

0r
|||| ji αα << ij ≠ , then  may be considerably large. On the other hand, since  becomes rich 

in this component,  will be correspondingly small in the next FOM cycle. Then  can act as 
a balance to  in reducing the iteration residual in this direction. 

|)(| 1, imp λ mr

|)(| 2, imp λ )(2, zpm

)(1, zpm

Remark 2. Assuming that  is equally rich in all the eigenvector components, i.e. 0r |||||| 21 nααα === L , 
then it is obtained from (2) that 

),2,1(|)(||)(| 1,1, niF js
n

ijjimis L=∑≤ −≠= λπλπ , 

which implies that the modulus of the product polynomial  on different eigenvalues will be mutually 
restricted. Consequently, the iteration residual will be simultaneously reduced on the spectrum of 

)(zsπ
A . 

A comprehensive discussion can be given for other intermediate cases. In conclusion, with s increasing, 
)(zsπ  can strike a balance in residual reduction among all the eigenvector components, in some sense that 

≈≈≈ L|)(||)(| 21 λπλπ ss | ,                                                       (3) )(| ns λπ

which implies that the FOM(m) cycles can complement one another harmoniously in reducing the iteration 
residual. 

3. Applications of the global property of FOM(m) 
The average work per iteration for general restarted Krylov subspace methods such as FOM(m) is 
proportional to mn ; large values of m  generally improve convergence but also increase the work per 
iteration. A considerably cheaper algorithm is polynomial preconditioning coupled with the basic one-step 
iterative method, namely, 

0)]([ rApr k
mkm = , L,2,1=k  ,                                                    (4) 

where the polynomial  is chosen in some appropriate fashion, satisfying . Provide that a 
good polynomial can be found, this algorithm require only order n  work per iteration, independent of . 

)(zpm 1)0( =mp
m

Good polynomials can not always be found. For a trivial example, consider the following 22×  linear 
system  with bAx =

⎥
⎦

⎤
⎢
⎣

⎡
=

λ
λ

c
A , ; , ⎥

⎦

⎤
⎢
⎣

⎡
=

1
1

b ⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

0x

where 0≠λ  and . We take . The iteration (3) can yield rapid convergence only if 1>>c 1=m zzp α+=1)(1  
satisfies that |  and  both lie well enough below 1. However, when )(| 1 λp |)(| 1 λcp 1|)(| 1 ≤λcp  is imposed, 
we have 02 ≤≤− λαc , which gives that cp 21|)(| 1 −≥λ . Inevitably, the iteration (3) will be very slowly 
convergent for large , e.g. 100. c

The global property of FOM(m) indicates a much more sophisticated procedure to construct good 
polynomial preconditioners: we may select a set of polynomials to give rapid convergence globally over all 
s-step cycles rather than locally for only one cycle. In particular, when it is observed FOM(m) converges 
steadily, a product polynomial of FOM(m) with 2=s  can be selected, which works quite well in our limited 
experiments. In fact, if the balance (3) is attained for FOM(m), then the product polynomial  can yield a 
convergence rate, in an asymptotic sense, as quick as that of FOM(m), resulting in greatly decreased work 
requirements. 

sπ

Here is how the coefficients of  are calculated explicitly, which follows closely the lines of the )(zpm
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construction of GMRES residual polynomials presented in [8]. Let  denote the matrix of Krylov 
vectors 

mK mn×

)( 0
1

00 rAArrK m
m

−= L . 

The Aronldi procedure constructs an matrix of orthonormal vectors spanning the same space mn×
)( 21 mm vvvV L= , 

by applying the iterative formula 
T

mmmmmmmmmm hhhhVAvhv ),,(),( 1
1

,11 L=−= −
++ .                                     (5) 

Since the columns of  and  span the same space for each m, we have that  mV mK

mmm CKV =  

for some upper-triangular matrix 
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This matrix is not formed during the FOM iteration, but to find  explicitly we will need it. The 
appropriate formula comes from (5): 
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By inserting the calculation (6) in the FOM iteration, we generate the elements of  column by column as 
the iteration proceeds. 

mC

Having solved a Hessenberg linear system at step m, FOM produces an iterate  of the form mx

yVxx mm += 0  

for some vector y of dimension m. Writing , it follows from  that T
mm yC ),,( 1 αα L= yCKyV mmm =

.)()( 002210

0

rAprAAAIyCAKr
yAVrAxbr

mmmmm

mmm
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ααα L
 

This gives us the coefficients of . )(zpm

Polynomial preconditioning may also be applied to the restarted Arnoldi method for solving eigenvalue 
problems. The preconditioning takes the form of a polynomial applied to the starting vector that is 
constructed to damp unwanted components from the eigenvectors expansion. The resulting algorithm takes 
the form: 

Algorithm 3: Restarted Arnoldi with polynomial preconditioning 
(1) Start: Choose an initial vector and normalize for , a number of Arnoldi steps m. 1v
(2) Iterate: 

(2.1) Perform m steps of the Arnoldi iteration starting with , resulting in 1v
 . mm

T
m HAVV =

(2.2) Compute eigenpairs  of  and stop if desired eigenpairs are well 
approximated. 

},{ )(
i

m
i gλ mH

(2.3) Construct a polynomial  to damp unwanted components. p
(2.4) ;  and go back to (2.1). 11

 The construction of the polynomial at step (2.3) may be guided by a priori information about the 
spectrum of A or solely by information gleaned from . A typical scheme is to sort the spectrum of  

)( vApv ← ||||/ 111 vvv ←

mH mH
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into two disjoint sets  and , with wΩ uΩ uwmH Ω∪Ω=)(σ . The Ritz values in the set  are regarded as 
approximations to the “wanted” eigenvalues of 

wΩ
A . The polynomial  is then constructed to be small on p uΩ  

in comparison with its modulus on .  wΩ

In the above problem the discrete set  may be replaced by a domain containing it but excluding . 
Let  be an open convex domain that contain 

uΩ wΩ

uC uΩ  with φ=∪Ω uw C . Chebyshev polynomials are 
appropriate when  is restricted to be an ellipse. This was proposed by Saad when he adapted the 
Manteuffel idea to eigenvalue calculations. The resulting algorithm is called an Arnoldi-Chebyshev iteration, 
see [11]. 

uC

Computing an optimal ellipse and then carrying out the Chebyshev iteration are quite complicated for 
practical calculations. Theorem 4 indicates a much simpler alternative of getting an desired polynomial that 
is small on  in comparison with its modulus on uΩ wΩ . If FOM is applied to the  linear system 

 and  is taken to be a linear combination of the eigenvectors of  associated with 
mm×

oom ryyH =− )( 0r mH uΩ , 
then by Remark 1 of Theorem 4, after )( mkk <  steps the resulting FOM residual polynomial will be 
considerably large on , in comparison with its modulus on wΩ uΩ . The following is an outline of this 
algorithm. 

Algorithm 4: Arnoldi-FOM 
(1) Start: Choose an initial vector and normalize for , a number of Arnoldi steps m and a 

number of FOM steps k. 
1v

(2) Iterate: 
(2.1) Perform m steps of the Arnoldi iteration starting with . Compute the m eigenvalues of 

the resulting Hessenberg matrix . Select 
1v

mH uΩ  and compute the associated eigenvalues. 
If satisfied stop. 

(2.2) Perform k steps of FOM to the linear system oom ryyH =− )(  with  and  
being a linear combination of the eigenvectors of  associated with 

00 =y 0r
mH uΩ . Construct the 

FOM residual polynomial . kp
(2.3) ;  and go back to (2.1). 11 )( vApv k← ||||/ 111 vvv ←

4. Numerical experiments 
We choose a rather simple example in order to have all the information available to understand the 
convergence behavior of the restarted Arnoldi method. The matrix is of the form  with 

 selected to be 

1−= SBSA
10001000, ×∈ RBS

;

1
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⎥
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                                                        (7) 
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⎡

=
O

B

First the global property of FOM(m) is numerically illustrated. Then the efficiency of product FOM 
polynomials used as preconditioning in solving linear systems is examined. Finally the ability of FOM 
polynomials used as preconditioning in the restarted Arnoldi method for eigenvalue problems is tested. The 
right-hand side for the first two tests is chosen as  and the initial guess  is taken to be zero. Tb )1,,1,1( L= 0x

Plotting |)(|log ,10 ikmp λ  against k for some randomly chosen , Fig. 1(a) shows the harmonious 
collaboration of FOM(20) cycles applied to this problem. We see that  always has large reduction 
when k is even and small reduction when k is odd for some eigenvalues, e.g., 

iλ
)(,20 zp k

500=λ . Meanwhile, the 
opposite holds for all the other eigenvalues, e.g., 1000;1=λ . This well illustrates Remark 1 of Theorem 4. 
In more details, in Fig. 1(b) it can be seen that the FOM(m) polynomials of all the odd/even cycles are almost 
the same (the first few polynomials are not included because they may be strongly influenced by initial 
vectors).  On the other hand, they are clearly distinguished for odd cycles and even cycles. The line of 

)()()( 1,,2 zpzpz kmkm +=π  is more flat than those of  and . Although the condition 

(3) are not ideally satisfied here, there exists a balance between local maxima of 

)(, zp km )(1, zp km +

)(2 zπ . This observation 
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can be taken as a more meaningful description of the global property of FOM(m), since these maxima 
dominate the convergence of iteration. 

 
 
 
 
 
 
 
 
 
 
 

(a)                                         (b) 

Fig. 1  (a) The lines marked with      ,      and      are correspond to  respectively; 1000;500;1=λ
(b) The lines marked with      ,       and       are correspond to ,  and 7,5,3, )}({ =kkm zp 8,6,4, )}({ =kkm zp

)()()( 6,5,2 zpzpz mm=π  respectively. 

Next, polynomial preconditioning using FOM product polynomials (referred to as FOM P.P.P. in Table 2, 
 is constructed from the fifth and sixth FOM(20) cycles in order to remove the influence of initial 

vectors) is applied to the problem (7). The test was performed on an Intel Pentium IV/1.70G using Visual 
FORTRAN Professional Edition 5.0A. The algorithms selected for comparison are FOM(20), GMRES(20) 
and hybrid GMRES of [8] with a switchover step number 20. The convergence tolerance is .  Table 
2 gives the run time for each of the algorithms. 

)(2 zπ

1010−=ε

Table 2.  CPU seconds to convergence for each of the algorithms 

Algorithm FOM P.P.P. FOM(20) GMRES(20) Hybrid GMRES 

CPU seconds 32.78 54.46 53.95 81.12 
 

For this problem FOM(20) and GMRES(20) do about equally well. The hybrid GMRES algorithm, 
which can also be regarded as a polynomial preconditioning and is closely related to our new algorithm, lags 
far behind. In fact, assuming that δ  is the average number of nonzero elements per row of A , the work per 
step for polynomial preconditioning will be δ+1  vector operations (see [8, Section 6]). Therefore, low 
sparsity of A  will hinder the convergence rate of polynomial preconditionings, just as observed in this 
example. However, we see that the new algorithm outperforms FOM(20) and GMRES(20) clearly. This 
shows the appealing property of FOM product polynomials when used as a preconditioning. 

Finally we discuss FOM used as a preconditioning in the restarted Arnoldi method for eigenvalue 
problems. For clarity only the step (2.2) of the Arnoldi-FOM algorithm is considered in detail. After 
performing 40 steps of the Arnoldi algorithm to the problem (7) with an initial vector  normalized from 

, the eigenpairs of the resulting Hensenberg matrix  are computed. The set  is selected as 
10 eigenvalues of largest real parts: 

1v
T)1,,1,1( L mH wΩ

},,,{ 1021 λλλ L , and then },,,{ 401211 λλλ L=Ωu . Let 
 be the normalized eigenvectors of  associated with },,,{ 401211 ggg L mH uΩ . We perform k steps of 

FOM to the linear system 

oom ryyH =− )( , 

where  and  is simply taken as . The factor 00 =y 0r ∑ =
40
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|)(|min|)(|max λλτ
λλ

kkk pp
wu Ω∈Ω∈

=  

is then computed to examine the efficiency of the FOM preconditioning - the less  is, the more efficiently 
the preconditioning works. Some of its values are given in Table 3. 

kτ

Table 3.  Some values of  for different k kτ

k 8 12 16 20 24 

kτ  0.6677 0.4325 0.2109 0.093 0.026 

5. Conclusions 
In this paper we have presented a study on the restarted Arnoldi method for large unsymmetric matrix 
problems. In particular, with some simplification assumptions a global property of FOM(m) has been 
described. Although for realistic problems FOM(m) may behave much more intricately, we believe our 
findings can help understand the Arnoldi procedure significantly more than before. 

Based on the study of FOM(m), two polynomial preconditioning techniques using FOM residual 
polynomials are introduced. However, there remain many problems to be investigated. For example, it is 
observed that FOM product polynomial preconditioning lacks robustness to difficult problems. In this case 
other preconditionings may be used first, or, it can be accelerated, for example, by applying a Krylov 
subspace method to the preconditioned system. We hope a fuller understanding of these techniques will 
come with further analysis, experiments, and algorithmic development. 

Interesting papers related to our study include [3,6,7,13], which have focused on improving the 
information generated by GMRES and FOM at restart time by including the spectral information of A , in the 
form of eigenvalue or eigenvector approximations. In particular, in [7] a restarted FOM algorithm augmented 
with eigenvectors is proposed, in which some Ritz vectors are added to the Krylov subspace at the time of 
restarting in order to deflate the corresponding eigenvalues and thus improve the convergence. This process 
is worthy to be analyzed again in more detail with our theoretical results. 
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