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Abstract. Since their introduction in a classic paper by Rudin, Osher and Fetemi [1], total variation 
minimizing models have become one of the most popular and successful methodology for image restoration. 
More recently, there has been a resurgence of interest and exciting new developments, some extending the 
applicabilities to inpainting, blind deconvolution and vector-valued images, while others offer improvements 
in better preservation of contrast, geometry and textures, in ameliorating the staircasing effect, and in 
exploiting the multiscale nature of the models. In addition, new computational methods have been proposed 
with improved computational speed and robustness. In this paper, a predictor-Corrector techniques are 
pointed out and applied in to the total variation-based image denoising.The numerical experiments shows the 
improvement are fairly valid. 
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1. Introduction 
Variational model have been extremely successful in a wide variety of restoration problems, and remain one 
of the most active areas of research in mathematical image processing and computer vision. By now, their 
scope encompasses not only the fundamental problem of image denoising, but also other restoration tasks 
such as deblurring, blind deconvolution, and inpainting. Variational models exhibit the solution of these 
problems as minimizers of appropriately chosen functionals. The minimization technique of choice for such 
models routinely involves the solution of nonlinear partial differential equations (PDEs) derived as necessary 
optimality conditions. 

Perhaps the most basic (fundamental) image restoration problem is denoising. It forms a significant 
preliminary step in many machine vision tasks, such as object detection and recognition. It is also one of the 
mathematically most intriguing problems in vision. A major concern in designing image denoising models is 
to preserve important image features, such as those easily detected by the human visual system, while 
removing noise. One such important image feature are the edges; these are places in an image where there is 
sharp change in image properties, which happens for instance at object boundaries. A great deal of research 
has going into designing models for removing noise while preserving edges; recently there has also been a 
lot of effort in preserving other fine scale image features, such as texture. All successful denoising models 
take advantage of the fact that there is an inherent regularity found in natural images; this is how they 
attempt to tell apart noise and actual image information. Variational and PDE based models make it 
particularly easy to impose geometric regularity on the solutions obtained as denoised images, such as 
smoothness of boundaries. This is one of the main reasons behind their success. 

Total variation based image restoration models were first introduced by Rudin, Osher, and Fatemi (ROF) 
in their pioneering work [1] on edge preserving image denoising. It is one of the earliest and best known 
examples of PDE based edge preserving denoising. It was designed with the explicit goal of preserving sharp 
discontinuities (edges) in images while removing noise and other unwanted fine scale detail. Being convex, 
the ROF model is one of the simplest variational models having this most desirable property. The 
revolutionary aspect of this model is its regularization term that allows for discontinuities but at the same 
time disfavors oscillations. It was originally formulated in [1] for gray-scale imagery in the following form: 

 
∗ This work is finished by the first author in the period of visiting the University of Liverpool. 
+ Corresponding author. Tel: +86-0546-8396320; fax: +86-0546-8392320. 
  E-mail address: liwg20022004@yahoo.com.cn 

Published by World Academic Press, World Academic Union 



W. Li, et al: Predictor-Corrector Method for Total Variation Based Image Denoising 30 
 

                           ∫Ω=−
∇

∫ Ω

dxu
dxfu 22)(

inf
σ

                                                       (1.1) 

Here, denotes the image domain (for instance, the computer screen), and is usually a rectangle. The 
function 

Ω
Rxf →Ω:)(   represents the given observed image, which is assumed to be corrupted by 

Gaussian noise of variance . The constraint of the optimization forces the minimization to take place over 
images that are consistent with this known noise level. The objective functional itself is called the total 
variation (TV) of the function ; for smooth images it is equivalent to the  norm of the derivative, 
and hence is some measure of the amount of oscillation found in the function . Optimization problem 
(1) is equivalent to the following unconstrained optimization, which was also first introduced in [1]: 
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Here, 0≥λ is a Lagrange multiplier. The equivalent of problem (1.1) and (1.2) has been established in [2]. 
In the original paper [1] there is an iterative numerical procedure given for choosing so that the 
solution obtained solves (1.1). 

)(xu
)(xu

We point out that total variation based energies appear, and have been previously studied in, many 
different areas of pure and applied mathematics. For instance, the notion of total variation of a function and 
functions of bounded variables appear in the theory of minimal surfaces. In applied mathematics, total 
variation based models and analysis appear in more classical applications such as elasticity and fluid 
dynamics. Due to ROF, this notion has now become central also in image processing. 

Over the years, the ROF model has been extended to many other image restoration tasks, and has been 
modified in a variety of ways to improve its performance. In this paper, we will concentrate on numerical 
algorithms proposed for minimizing the ROF objective. Recently, most of algorithm in this topic fall into the 
three main approaches, namely, direct optimization, solving the associated Euler-Lagrange equations and 
using the dual variable explicitly in the solution process to overcome some computational difficulties 
encountered in the primal problem. We will focus on the last approach in section 2. And a predictor-corrector 
algorithm is given in section 3. In last section, some numerical examples are given. 

2. A Primal-Dual Method for TV Image Restoration 
In their original paper [1], Rudin et al. proposed the use of artificial time marching to solve the Euler-
Lagrange equations which is equivalent to the steepest descent of the energy function. More precisely, 
consider the images as a function of space and time and seek the steady state of the equation 
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Here, β
β

+∇=∇ uu :  is a regularized version of u∇ to reduce degeneracies in flat regions, where 

0≈∇u . In numerical implementation, an explicit time marching scheme with time step and space step 

size 

tΔ
xΔ is used. Under this method, objective value of the ROF model is guaranteed to be decreasing and the 

solution will tend to the unique minimizer as time increases. However, the convergence is usually slow due 
to the Courant-Friedrichs-Lewy (CFL) condition, uxct ∇Δ≤Δ 2  for some constant , imposed on the 

size of the time step, especially in flat regions where

0>c

0≈∇u . 

To completely get rid of CFL conditions, Vogel and Oman proposed in [3] a fixed point iteration scheme 
(FP) which solves the stationary Euler-Lagrange directly. The Euler-Lagrange equation is linearized by 
lagging the diffusion coefficient and thus the thi −+1  iterate is obtained by solving the sparse linear 
equation: 
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While this method converges only linearly, empirically, only a few iterations are needed to achieve visual 
accuracy. In practice, one typically employs specifically designed solvers to solve (2.2) in each iteration. 

Although regularization by 
β

u∇1 avoids the coefficient of the parabolic term becoming arbitrarily 

large, the use of a large enough β  for effective regularization will reduce the ability of the ROF model to 
preserve edges. 

Due to the presence of the highly nonlinear term 
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satisfactorily in the sense that its domain of convergence is very small. This is specially  true if the 
regularizing parameter β  is small. On the other hand, ifβ  is relatively large, then this term is well behaved. 
So it is natural to use a continuation procedure stating with a large value of β  and gradually reducing it to 
the desired value. Chan et al. proposed such an approach in [4]. Although the choice of the sequence of 
subproblem to solve is crucial for its efficiency, this method is locally quadratically. 

Chan et al. in [5], Carter in [6] and Chambolle in [7] exploit the dual formulation of the ROF model by 
using the identity  gxx g ⋅≡ ≤1sup  for vectors in Euclidean spaces and treating g  as the dual variable, 

one arrives at the dual formulation: 
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Where 2B  is the unit disk in 2R . Once g is obtained, the primal variable can be recovered by 
. A promise of dual formulation is that the objective function is differentiable in $g$, 

unlike the primal problem which is badly behaved when
gfu ⋅∇−= −1λ

0=∇u . However, the optimization problem 
becomes a constrained one which requires additional complexity to solve. The approach used in [5] solves 
for  and  simultaneously. Its derivation starts by treating the term u g uu ∇∇ in the primal Euler-
Lagrange equation as an independent variable , leading to the system: g
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The above system of nonlinear equations is solved by Newton's method and quadratic convergence rate 
is almost always achieved. In the Newton updates, one may combine the two equations to eliminate the fixed 
point iteration (2.2). Empirically, this primal-dual method is much more robust than applying Newton's 
method directly to the primal problem in u only. 

3. Predictor-Corrector method for total variation image denoising 
United the primal-dual method and continuation method, we point out a predictor-corrector method for total 
variation-based image denoising. Because for a big β , the Newton method converges very fast we can use 
the solution for the larger β  as the initial guess for the method with the smaller β . Our strategy is to 
decrease β  gradually as to the given positive number  at which we want to solve the equation (2.4).  ∗β

In fact, it's easily to get the whole procedure. 
Algorithm 1. (Predictor-Corrector) 
(i) Set 0β  and use  the observed images as the initial guess; fu =0

(ii) Use Primal-Dual method to find the solution ; ∗
0u

(iii) Do i=1,2,K, 
 (a) if )max(1 ii σββ >+ , set ii ββ =+1 , tol= 0ε , 

JIC email for subscription: info@jic.org.uk 



W. Li, et al: Predictor-Corrector Method for Total Variation Based Image Denoising 32 
 

else , tol =∗
+ = ββ 1i 1ε ; 

(b) use Primal-Dual method to find the solution . 1+iu

Generally, we choice 0ε  is bigger than ε . Such as  and , because our aim is to 
provide a predictor for next iteration. The last step is real corrector. But the choice of 

2
0 10−=ε 510−=ε

1<σ  depends on the 
problems that we want to solve. Such as . Experiments show this algorithm has a better behavior 
than original Primal-Dual method [5] whatever computing time or effect of denoising. Of course, this 
predictor-corrector algorithm has made a great progress compared to original continuation method [4]. 

510−=σ

If we would like to improve the corrector, we can also use the following corrector model: 
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This model retains the properties of ROF model-- recover the edges of the original image and regularize 
the geometry of level sets without penalizing discontinuities. And it allows us to reduce the error of edges 
between original and restoration images. Its corresponding Euler-Lagrange equation is 
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The idea to solve (3.2) is to introduce new variables  and : 1w 2w
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and replace (3.2) by the following equivalent system of nonlinear PDEs 
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Now we linearize this  system by Newton method. ),,( 21 wwu
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Equation (3.5) can be solved by elimination 21 , ww δδ  and solving the result equation for uδ  
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After uδ is obtained we can compute 21 , ww δδ  by the following equations 
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In our experiments, μ is often smaller thanλ . 

Algorithm 2. (Corrector Algorithm) 
(i) Choose α  and μ  and make sure the predictor value  of imageu . 1u

(ii) Use the formula (3.6), (3.7) and (3.8) to compute uδ , 21 , ww δδ  respectively. 

(iii) If tolhh
oldnew

<11 , stop, else go to (ii). 

4. Numerical Examples 
In this section we present results of our denoising algorithms on three images. The noise image f  is 
obtained by adding random noise of level σ  to the true image u . More precisely, we add random error to 
each pixel of the true image such that σ=−

FF
ufu . In our examples, we choose 4.0=σ . 

Our first image is a gray-scale image with 256256×  pixels and range [0,255] to which Gaussian white 
noise is added. The original and noisy images are shown below (Figure 1). In this experiment we take Ω to 
be unit square. We take values of 30 and for2010− α  andβ , and . The processed images from 
Primal-Dual method and Predictor-Corrector method are displayed in Figure 1 and computing time are 
1203.6 seconds (53 steps) and 758.8 seconds (38 steps) separately. 

410−=tol
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Figure 1  Top left is original image and top right is noise image. 

420 10,10,30 −− === tolβα . Bottom left is from P-D and bottom right from P-C. 

In our second experiment we compare the performance of P-D and our P-C for various sizes of the image. 
We apply both methods to various sizes of the image shown in Figure 1. As before we have 4.0=σ . We 
take values of 30 and for the parameters 410− α and tol in all experiments. The inner linear steps in the 
primal-dual method are done using preconditioned conjugate gradient with incomplete Cholesky pre-
conditioner, on step k the stop criteria for these inner steps is a relative decrease of the linear residual by a 
factor of 219. r0,1.0min( −− kk r where r is the nonlinear residual, as specified in [4]. The initial guess for 

all methods is the noisy image f and the stopping criteria for all methods is a decrease in the relative 
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residual by a factor of . All the results for comparison can be found in Table 1. 410−

Table 1. 

    n P-D P-C 
 steps cpu time(s) steps cpu time(s) 

)10(256 2−=β  12 77.6 11 62.2 

)10(256 3−=β  14 114 12 99.9 

)10(512 2−=β  13 390.2 12 298.9 

)10(512 3−=β  15 674.9 14 540.3 

)10(1024 2−=β  13 1617 12 1299 

)10(1024 3−=β  16 3037 14 2347 

    
Next we test our method on 2 more realistic images, the Lenna image and the satellite image 

with  and . All images are 3=SNR 1=SNR 256256×  in size and have range [0,255].  in all 
cases, 

210−=β
30=α and 50 for Lenna and 50 for the Satellite.  As before the initial guess is the noisy image and 

the stopping criteria is a decrease in the relative residual by a factor of  and . The results are given 
by Table 2 below. 

410− 810−

Table 2. 

Image P-D P-C 

 steps Cpu time(s) steps cpu time(s) 

Lenna (SNR 3) 14 91 13 75 

Lenna (SNR 1) 19 156 18 128 

Satellite(SNR 4) 16 123.1 14 89.4 

Satellite(SNR 1) 16 122.7 14 89.9 
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Figure 2 (Lenna) Top left is original image and top right is noise image. 

420 10,10,30 −− === tolβα . Bottom left is from P-D and bottom right from P-C. 
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Figure 3 (Satellite) Top left is original image and top right is noise image. 

420 10,10,50 −− === tolβα . Bottom left is from P-D and bottom right from P-C. 

5. Conclusions 
The standard Primal-Dual method worked well in denoising problems but we want to improve its 
performance in the convergence. With our recommended Predictor-Corrector methods we observe it gives 
about a  improvement. So our method is efficient and robust. Furthermore, we suggest that the 
predictor-corrector Newton method can be used directly if

%20
β  is small (such as ), or the truncated 

versions of Newton (predictor-corrector) algorithm based on the conjugate gradient method with incomplete 
Cholesky as pre-conditioner. We have known the multi-grid method with the use of the Krylov acceleration 
procedure made the convergence fast and it is the same as our work in some extent. To improve the effect of 
image denoising, other models must be considered future. 

410−<β
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