
 ISSN 1746-7659, England, UK

2

Journal of Information and Computing Science
Vol. 1, No. 2, 2006, pp. 67-77

Discretional Array Operations for Secure Information Flow

Jianbo Yao  +, Jianshi Li

Faculty of Computer Science and Engineering, Guizhou University, Guiyang, Guizhou, 550025, China

(Received December 26,2006, accepted March 16, 2006)

Abstract. Arrays exist in many nontrivial programs. Array operations can cause subtle information leaks.
This paper allows array as first-class value and regards discretional array as array of array by alias array.
Arrays are given types of the form 1 alias τ τ , where 1τ is the security class of the array and 2τ is the
security class of the array's alias. To distinguish array from its alias, we propose a novel binary memory
model []1 2;μ μ . The soundness of our type system is proved by noninterference property.

Keywords: alias array, discretional array , secure information flow, type system.

1. Introduction
The static analysis of secure information flow has been studied for many years [1]. The analysis of secure
information flow is that checks whether the information flow of a given program is secure. Secure
information flow ensures the noninterference, that is, observations of the initial and final values of low-
security class (program variables do not provide any information about the initial value of high-security

class program variables.

)L

()H

For example, in the assignment statement :y x= , there is an information flow from x to . If the
security class of

y
x is L or H and the security class of y is H , then the information flow x to y is secure.

If x is H and is y L , then the information flow x to is insecure. y
In some early work on secure information flow, Denning et al. [2,3,4] proposed a static certification

method for verifying the secure flow of information through a program. Program variables are assigned a
security class and security classes are assumed to form a lattice structure, ordered by ≤ . Each variable has a
static security class binding that can be determined from the declarations in the program.

Later, Vopano et al. [5,6] developed an elegant syntax-directed type system for annotating program
variables, commands, and procedure parameters with security levels. They also proved that their type system
ensures noninterference. Geoffrey Smith [7] extend the analysis to deal with a a multi-threaded imperative
language. The type system is insufficient to ensure noninterference.

Benjamin C. Pierce [8] presents the definition of type system. “A type system is a tractable syntactic
method for proving the absence of certain program behaviors by classifying phrases according to the kinds of
values they compute.” Type system can be used in secrecy analysis.

Banerjee and Naumann [9] extend the type system of Volpano et al. to support a more realistic object
oriented sequential language. They proved noninterference for a language with pointers, mutable state,
private fields, class-based visibility, dynamic binding and inheritance, type casts, type tests, and mutually
recursive classes and methods.

Amer Diwan et al. [10] use programming language types to disambiguate memory reference. They uses
type compatibility to determine aliases.

Many type systems of secure information flow have been developed, of special mention Deng and
Smith's type system focused on one-dimensional integer array operations for practical secure information

+ Corresponding author. Tel.: +86-851-3627946; fax: +86-851-3627946.
 E-mail address: jianbo-yao@21cn.com

Published by World Academic Press, World Academic Union

J. Yao, J. Li: Discretional Array Operations for Secure Information Flow 68

flow [11]. Arrays are given types of the form 1 arr 2τ τ , where 1τ is the security class of the array's contents
and 2τ is the security class of the array's length. The type system ensures noninterference property. In their
system, a multidimensional-array isn't regarded as array of array, for they do not treat arrays as first-class
values for simplicity.

Arrays play a major role in many nontrivial programs, but array operations can cause information leaks.
For example, the program

0;i =

[] { }0int 5 0,1,2,3, 4 ;a =

[] { }1int 5 5,6,7,8,9 ;a =

[]int 2 ;a

(){ 2while i <

[] & 5 ; i ix a=

[] ;ia i x=

 1;i i= +

}

Here, x denotes an alias of the one-dimensional array []5ia . There are some information flows [4] from

 to the alias []5ia ix . Hence if is []5ia H , then we must make the alias ix be H as well.

In our system, arrays are treated as first-class values and a discretional array may be regarded as array of
array. arrays are given types of the form 1 alias 2τ τ ; where 1τ is the security class of the array and 2τ is the
security class of its alias. Several combinations are useful: is an array whose both contents and its
alias are private,

alias L L
 alias H H is an array whose both contents and its alias are public.

The remainder of the paper is organized as follows. In Section 2, we describe the simple sequential
imperative language that we consider, and formally define its semantics for array operations. In Section 3 we
present the details of our type system, and in Section 4 we prove that it guarantees a noninterference property.
Finally, Section 5 gives our conclusions.

2. Syntax and Semantics
Our typed language is the simple imperative language[4] with arrays. The syntax of the language is as
follows:
(phrases) ∷p e= ︱ c

(expressions) ∷e x= ︱ ︱n []x e ︱&x︱
1 2e e÷ ︱ 1 2e e∗ ︱

1 2e e∨ ︱ 1 2e e∧ ︱ ︱1 2e e+ 1 2e e− ︱ 1 2e e=

︱ 1 2e e≠ ︱ ＜1e 2e "

(commands) c∷= :x e= ︱ []1 2:x e e= ︱ []xallocate e ︱ []& :x x e= ︱ []1 : &x e x= ︱ ︱ skip

1 2 if e then c do c ︱ ︱ while e do c 1 2;c c

Here, meta-variable x ranges over identifiers and n over integer literals. 0 stands for false and 1 for true.
The expression []x e is one-dimensional array. The expression &x is an alias of an array. The command

[] xallocate e allocates a 0-initialized block of memory for one-dimensional array []x e ; the size of the

array is given by e . The command []& :x x e= declares that &x is an alias of the array []x e . The

command []1 : &x e x= initializes the elements of an array by alias.

A program c is executed under a memory, which maps identifiers to values. A value is either an integer

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 1 (2006) 2, pp 67-77 69

n a multidimensional-array []0 1 2 1, , , , kx x x x −… ,where , 0k ≥ 0 1 2 1, , , , kx x x x −… are aliases of inferior-
dimensional-array. An array and its alias have same address, so two identifiers a and b can point to the same
block of memory. A binary memory []1 2;μ μ is needed for distinguished them. A program c is executed

under the binary memory []1 2;μ μ . 1μ maps identifiers to values. A value is either an integer n or a

multidimensional-array []0 1 2 1, , , , kx x x x −… ,where , 0k ≥ 0 1 2 1, , , , kx x x x −… are aliases of inferior-

dimensional-array. 2μ maps aliases identifiers to values.

 The formal semantics of commands and expressions is given by a standard structural operational
semantics. See Figure 1.

(UPDATE)
[] ()

1

1 2 1 1 2

()
(: , ;) : ;

x dom
x e x e

μ
μ μ μ μ μ

∈
⎡ ⎤= ⇒ =⎡ ⎤⎣ ⎦⎣ ⎦

(NO-OP) []() []1 2 1 2, ; ;skip μ μ μ⇒ μ

(BRANCH)
()
[]() []()

1

1 2 1 2 1 1 2

1
if then else , ; , ;

e
e c c c

μ
μ μ μ

=
⇒ μ

()
[]() []()

1

1 2 1 2 2 1 2

0
if then else , ; , ;

e
e c c c

μ
μ μ μ

=
⇒ μ

(LOOP)
()
[]() []

1

1 2 1 2

0
while do , ; ;

e
e c

μ
μ μ μ

=
⇒ μ

()

[]() []()
1

1 2 1 2

1
while do , ; ; while do , ;

e
e c c e c

μ
μ μ μ

=
⇒ μ

(SEQUENCE)
[]()
[]() ()

'
1 1 2 1 2

'
1 2 1 2 2 1 2

, ; ;

; , ; , ;

c

c c c

μ μ μ μ

μ μ μ μ

⎡ ⎤⇒ ⎣ ⎦
⎡ ⎤⇒ ⎣ ⎦

[]() ()
[]() ()

' '
1 1 2 1 1 2

' '
1 2 1 2 1 2 1 2

, ; , ;

; , ; ; , ;

c c

c c c c

μ μ μ μ

μ μ μ μ

⎡ ⎤⇒ ⎣ ⎦
⎡ ⎤⇒ ⎣ ⎦

Figure1. The formal semantics of commands and expressions

The formal semantics of array commands and expressions are given in Figure 2. We prescribe an array
indexes with an out-of-bounds indices yields 0 and an array initializes with an out-of-bounds indices is
skiped.

(ARR-INDEX)
() []() [] ()

[] []() []
1 1 2 0 1 2 1

1 2 2

, ; , , ; , ,0
; ;

k

i

x dom x x x e i i k
x e x

μ μ μ μ μ
μ μ μ

−⎡ ⎤∈ = = ≤ <⎣ ⎦
=

…

() []() [] ()

[]() []

1 1 2 0 1 2 1

1
2

2

, ; , , ; , ,x 0

0;

kdom x x x e i i k

x e

μ μ μ μ μ
μ

μ
μ

−⎡ ⎤∈ = = < ∨ ≥⎣ ⎦
⎡ ⎤

=⎢ ⎥
⎣ ⎦

… i

JIC email for subscription: info@jic.org.uk

J. Yao, J. Li: Discretional Array Operations for Secure Information Flow 70

(DIV)
() ()

()
1 2

1 2

, 0
0

e n e
e e

μ μ
μ

= =
÷ =

() ()
() []

1 1 2 2

1 2 1 2

, ,e n e n n
e e n n

μ μ
μ

0= = ≠
÷ = ÷

(UPDATE-ARR)
() []() [] ()

[] []() ()
1 1 2 0 1 2 1

1 1 2 1 1 1 2

, ; , , ; , , 0

, ; : ;
k

i

x dom x x x e i i k

x e e x e

μ μ μ μ μ

μ μ μ μ μ
−⎡ ⎤∈ = =⎣ ⎦

⎡ ⎤= ⇒ =⎡ ⎤⎣ ⎦⎣ ⎦

… ≤ <

() []() [] ()
[] []() []

1 1 2 0 1 2 1

1 1 2 1 2

, ; , , ; , , 0
, ; ;

kx dom x x x e i i i k
x e e

μ μ μ μ μ
μ μ μ μ

−⎡ ⎤∈ = =⎣ ⎦
= ⇒

… < ∨ ≥

(CALLOC)
() ()

[] []() []
()1

1 1

1 2 1 2

 of these

, 0

allocat , ; : 0,0, ,0 ;
e

x dom e

x e x
μ

μ μ

μ μ μ μ

∈ ≥
⎡ ⎤
⎢ ⎥⇒ =⎢ ⎥
⎢ ⎥⎣ ⎦

…��	�

() ()
[] []()

1 1

1 2 1 2

, 0
allocat , ; : 0 ;

x dom e
x e x

μ μ
μ μ μ μ

∈ <
⇒ ⎡ = ⎤⎣ ⎦

(CALIAS)
() []() []

[] []() [] []
1 1 2 0 1 2

1 2 0 1 0 1

, ; , , ;
& : , ; , , ; , ,

k

k k

x dom x x x
x x e x x x x

μ μ μ μ
μ μ

−

− −

⎡ ⎤∈ = ⎣ ⎦
⎡ ⎤= ⇒ ⎣ ⎦

…
… …

() () []() []
[]() []
()

[] []() []

1 1 1 2 0 1

1 2 1 0 1

1

1 2 1 0 1

,& , ; , , ; ,

; & ; , , ,

,0
: & , ; : ; , ,

k

k

i k

x dom x dom x x x

x x x

e i i k
x e x x x x x

μ μ μ μ

μ μ μ

μ
μ μ μ

−

−

−

2μ⎡ ⎤∈ ∈ = ⎣ ⎦
⎡ ⎤= ⎣ ⎦

= ≤ ≤
⎡ ⎤= ⇒ =⎣ ⎦

…

…

…

() () []() []
[]() [] ()

[] []() []

1 2 1 2 0 1

1 2 1 0 1 1

1 2 1 0 1

,& , ; , , ; ,

; & ; , , , ,0
: & , ; : ; , ,

k

k

i k

x dom x dom x x x

x x x e i i k
x e x x x x x

μ μ μ μ

μ μ μ μ
μ μ μ

−

−

−

2μ⎡ ⎤∈ ∈ = ⎣ ⎦
⎡ ⎤= = ≤ ≤⎣ ⎦

⎡ ⎤= ⇒ =⎣ ⎦

…

…
…

Figure2. The formal semantics of array commands and expressions

3. The Type System
In this section, we extend the typing rules in [5] with new rules for typing array operations. We type array
using a type of the form 1 alias 2τ τ ; where 1τ is the security class of the array and 2τ is the security class of
its alias.

Here are the types used by our system:
(data types) τ ∷= L ︱ H
(phrase types) ρ ∷= τ ︱ varτ ︱ cmdτ ︱ 1 2 aliasτ τ

For simplicity, we limit the security classes here to just L and H ; it is possible to generalize to an
arbitrary lattice of security classes. Type varτ is the type of a variable and cmdτ is the type of a command.

All of the four possible array types (H alias H , H alias L , ,), do
not really make sense. Although an

 L alias H L alias L L alias H
L -array can be aliased by L -variable and H -variable, a type L -array

never is aliased an H -variable[9]. So if an array is of type L , then its alias must be L . H alias L do not
really make sense too. There is an information flow [4] from an array to its alias. Hence if an array is of type
H , then its alias must be H . We therefore adopt the following constraint globally:

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 1 (2006) 2, pp 67-77 71

Global Array Constraint: In any array type 1 alias 2τ τ , we require that 2 1τ τ= .

We can now present our type system formally. It allows us to prove typing judgments of the
form :pγ ρ− as well as subtyping judgments of the form 'ρ ρ⊆ . Here γ denotes an identifier typing,

which maps identifiers to phrase types of the form var τ or 1 alias 2τ τ . The typing judgment

:pγ ρ− means that phrase p has type ρ , assuming γ prescribes types for any free identifiers in p . The

subtype relation is antimonotonic in the types of commands, meaning that if 'τ τ⊆ then '
cmd cmdτ τ⊆ . As

usual, there is a type coercion rule that allows a phrase of type ρ to be assigned a type 'ρ whenever 'ρ ρ⊆ .

The typing rules are given in Figure 3 and the subtyping rules in Figure 4.

(R-VAL)
() var

:
x

x
γ τ

γ τ
=
−

(ARRAY)
()

[]
1 2

1

:

x alias
x e

γ τ τ
γ τ
=
−

(INT) :n Lγ −

(QUOTIENT) 1 2

1 2

: , :
:

e e
e e

γ τ γ τ
γ τ
− −

− ÷

(ADDITION) 1 2

1 2

: , :
:

e e
e e

γ τ γ τ
γ τ
− −

− +

(ASSIGN)
() var , :

: : cmd

x e
x e

γ τ γ τ
γ τ

= −
− =

(ASSIGN-ARR)
()

[]
1 2 1 1 2

1 2 1

 , : , :
: : cmd

x alias e e
x e e

1γ τ τ γ τ γ
γ τ

= −

− =

τ−

(ALLOCATE)
()

[]
1 2

1

 , :
 : cmd

x alias e
allocate x e

1γ τ τ γ
γ τ

= −
−

τ

(ALIAS)
() 1 2

2

& :

x alias
x

γ τ τ
γ τ
=
−

()
[]

1 2

2

& : : cmd

x alias
x x e

γ τ τ
γ τ

=
− =

()
[]

1 2

1 1

: & : cmd

x alias
x e x

γ τ τ
γ τ

=
− =

(SKIP) : cmdskip Hγ −

(IF)
1

2

1 2

: , : ,

:

if then else :

cmd

cmd

cmd

e c

c

e c c

γ τ γ τ

γ τ

γ τ

− −

−

−

(WHILE)
: , :

while do :
cmd

cmd

e c

e c

γ τ γ τ

γ τ

− −

−

JIC email for subscription: info@jic.org.uk

J. Yao, J. Li: Discretional Array Operations for Secure Information Flow 72

(COMPOSE)
1

2

1 2

: ,

:

; :

cmd

cmd

cmd

c

c

c c

γ τ

γ τ

γ τ

−

−

−

Figure 3. Typing Rules

(BASE) L H⊆

(CMD-)
'

'
cmd cmd

τ τ
τ τ

⊆
⊆

(REFLEX) ρ ρ⊆

(TRANS) 1 2 2

1 3

, 3ρ ρ ρ ρ
ρ ρ

⊆ ⊆
⊆

(SUBSUMP) 1 1 2

2

: ,
:

p
p

γ ρ ρ ρ
γ ρ

− ⊆
−

Figure 4. Subtyping Rules

Now, we discuss the array typing rules. In rule ARRAY, the security class of expression []x e depends on
the contents of the array x as well as on the alias of the array. Given the Global Array Constraint, this
simplifies to 1τ .

For rule ASSIGN-ARR, if : x H alias L , then the command []1 : 2x e e= can be given type ,

which intuitively says that it only assigns to
cmdH

H variables. If : x L alias L , then the command []1 2:x e e=

can be given type , which intuitively says that it only assigns to cmdL L variables. These are valid because

they do change the alias of the array []x e .

For rule ALLOCATE, the command []allocate x e do assign a length of index to the array x , and every

element of the array []x e can later be initialized by alias &x .

For rule ALIAS, &x is an alias of x ; If 1: x alias 2 τ τ , then [] 2& : : cmdx x e τ= . If 1 2: x alias τ τ ,

then []1 1: & : cmdx e x τ= .

4. Type Soundness as Noninterference
In this section, we establish the semantics soundness of our type system by proving a noninterference
theorem.

Definition 4.1: Given an identifier typing γ , if [] []1 2 1 2; , ; μ μ ν ν and γ have the same domain and

[]1 2;μ μ and []1 2; ν ν agree on all L identifiers, then memories []1 2;μ μ and []1 2; ν ν are equivalent. This

is written []1 2; γμ μ ∼ []1 2;ν ν .

Lemma 4.1 (Simple Security): If :e Lγ − and[] []1 2 1 2; ;γ μ μ ν ν∼ , then[]() []()1 2 1 2; ;e eμ μ ν ν= .

Proof. By induction on the structure of : e
1. The case x . By typing rule R-VAL and :x Lγ − , () varx Lγ = . We have []() []()1 2 1 2; ;x xμ μ ν ν= .

2. The case []x e . By typing rule ARRAY and [] :x e Lγ − , we have () x L alias Lγ = , :e Lγ − , for

some τ . By the definition of memory equivalence, we have [] []() [] []()1 2 1 2; ;x e xμ μ ν ν= e .

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 1 (2006) 2, pp 67-77 73

3. The case &x . By typing rule ALIAS and & :x Lγ − , we have () x alias Lγ τ= , for some τ . By

memory equivalence, we have []() []()1 2 1 2; & ; &x xμ μ ν ν= .

4. The case . By typing rule QUOTIENT and1e e÷ 2 1 :e Lγ − , 2 :e Lγ − , we have 1 2 :e e Lγ − ÷ ,

[]() []()1 2 1 1 2 1; ;e eμ μ ν ν= and []() []()1 2 2 1 2 2; ;eμ μ ν ν= e , then

[]() []()1 2 1 2 1 2 1 2; ;e e e eμ μ ν ν÷ = ÷ .

5. The case . By typing rule ADDITION and1e e+ 2 1 :e Lγ − , 2 :e Lγ − , we have 1 2 :e e Lγ − + ,

[]() []()1 2 1 1 2 1; ;e eμ μ ν ν= and []() []()1 2 2 1 2 2; ;eμ μ ν ν= e , then

[]() []()1 2 1 2 1 2 1 2; ;e e e eμ μ ν ν+ = + ..

6. The other cases , , ,1 2e e× 1 2e e∨ 1 2e e∧ 1 2e e= , 1 2e e≠ , 1 2e e< .

Each one of them is similar to The case 1e e2÷ and The case 1 2e e+ .

Lemma 4.2 (Confinement): If : cmdc Hγ − and []() ()' ' '
1 2 1 2, ; , ;c cμ μ μ μ⎡ ⎤→ ⎣ ⎦ or []() ' '

1 2 1 2, ; ;c μ μ μ μ⎡ ⎤→ ⎣ ⎦ ,

then [] ' '
1 2 1 2; ;γμ μ μ μ⎡ ⎤⎣ ⎦∼ .

Proof. This proof is by induction on the structure of the commands : c
1. The case :x e= . Here we have () varx Hγ = , so[] ()1 2 1 2; :x eγ ;μ μ μ μ μ⎡ ⎤=⎡ ⎤⎣ ⎦⎣ ⎦∼ .

2. The case []1 : 2x e e= . Here we have () x H alias Hγ = . Hence by rule UPDATE-ARR we

have[] ' '
1 2 1 2; ;γμ μ μ μ⎡ ⎤⎣ ⎦∼ .

3. The case [] allocate x e .

Here we have () x H alias Hγ = , so by rule CALLOCATE, we have[] ' '
1 2 1 2; ;γμ μ μ μ⎡ ⎤⎣ ⎦∼ .

4. The case []& :x x e= . Here we have () x H alias Hγ = . Hence by rule CALIAS, we

have[] ' '
1 2 1 2; ;γμ μ μ μ⎡ ⎤⎣ ⎦∼ .

5. The case []1 : &x e = x . Here we have () x H alias Hγ = . Hence by rule CALIAS, we

have[] ' '
1 2 1 2; ;γμ μ μ μ⎡ ⎤⎣ ⎦∼ .

6. The case , , and . These cases are trivial,

because[
skip 1if then else e c 2c cwhile do e

] ' '
1 2 1 2; ;μ μ μ μ⎡ ⎤= ⎣ ⎦ .

7. The case . 1 2;c c

The command is the composition of two commands and . The lemma follows directly by
induction.

1 2;c c 1c 2c

Lemma 4.3 (Subject Reduction): If : cmdcγ τ− and []() ()' ' '
1 2 1 2, ; , ;c cμ μ μ μ⎡ ⎤→ ⎣ ⎦ , then ': cmdcγ τ− .

Proof. This proof is by induction on the structure of the commands c :
1. The case . 1 2;c c

If is of the form , then it follows that c 1 2;c c 1 : cmdcγ τ− and 2 : cmdcγ τ− . By rule SEQUENCE, is

either or else , where

'c

2c '
1 2;c c []() ()' ' '

1 1 2 1 1 2, ; , ;c cμ μ μ μ⎡ ⎤→ ⎣ ⎦ . For the first case, we have 2 : cmdcγ τ− . For

JIC email for subscription: info@jic.org.uk

J. Yao, J. Li: Discretional Array Operations for Secure Information Flow 74

the second case, we have 1 : cmdcγ τ− hence by induction we have '
1 2; : cmdc cγ τ− by rule COMPOSE.

2. The case while do e c
If is the form of w , then c hile do e c τ must be L , we must have : cmdc Lγ − , and so

;while do : cmdc e c Lγ − .

3. The case of . 1 2if then else e c c

2cThe case of is similar to the case .. 1if then else e c while do e c

Lemma 4.4: If []() ' '
1 2 1 2 1 2; , ; ;kc c μ μ μ⎡→ ⎣ μ ⎤⎦ , then there exist 0 j k< < and " "

1 2;μ μ⎡⎣ ⎤⎦ such that

[]() " "
1 1 2 1 2, ; ;jc μ μ μ⎡→ ⎣ μ ⎤⎦ , and ()" " ' '

2 1 2 1 2, ; ;k jc μ μ μ μ ⎤⎦
−⎡ ⎤ ⎡→⎣ ⎦ ⎣

k→. denotes k fold− self composition of

. →
Proof. By induction on k . If the derivation begins with an application of the first SEQUENCE rule, then
there exists " "

1 2;μ μ⎡⎣ ⎤⎦ such that

[]() " "
1 1 2 1 2, ; ;c μ μ μ μ⎡ ⎤→ ⎣ ⎦

and

[]() " " 1 ' '
1 2 1 2 1 2 1 2; , ; ; ;kc c μ μ μ μ μ− μ⎡ ⎤ ⎡→ → ⎤⎣ ⎦ ⎣ ⎦ .

So we can let . And, since , we have 1j = 1 1k − ≥ j k< .

If the derivation begins with an application of the second SEQUENCE rule, then there exists and '
1c

[]11 21;μ μ such that

[]() []()'
1 1 2 1 11 21, ; , ;c cμ μ μ μ→

and

[]() []()' 1
1 2 1 2 1 2 11 21 1 2; , ; ; , ; ;kc c c c ' 'μ μ μ μ μ− μ⎡ ⎤→ → ⎣ ⎦ .

By induction, there exists j and " "
1 2;μ μ⎡⎣ ⎤⎦ such that

0 1j k< < − , []()' "
1 11 21 1 2, ; ;jc "μ μ μ μ⎡ ⎤→ ⎣ ⎦ ,

and

()" " 1 ' '
2 1 2 1 2, ; ;k jc μ μ μ− −⎡ ⎤ ⎡→⎣ ⎦ ⎣ μ ⎤⎦ .

 Hence

[]() 1 " "
1 1 2 1 2, ; ;jc μ μ μ+ μ⎡ ⎤→ ⎣ ⎦

and

() ()1" " ' '
2 1 2 1 2, ; ;k jc μ μ μ− +⎡ ⎤ ⎡→⎣ ⎦ ⎣ μ ⎤⎦ .

And . 0 1j k< + <

Theorem 4.6 (Noninterference): Suppose that

: cmdcγ τ− , and [] []1 2 1 2; ;γ μ μ ν ν∼ .

If

[]() ' '
1 2 1 2, ; ;c μ μ μ∗ μ⎡ ⎤→ ⎣ ⎦ and []() ' '

1 2 1 2, ; ;c ν ν ν∗ ν⎡ ⎤→ ⎣ ⎦ ,

then

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 1 (2006) 2, pp 67-77 75

' ' ' '
1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦ .

Proof. By induction on the length of the execution []() ' '
1 2 1 2, ; ;c μ μ μ∗ μ⎡ ⎤→ ⎣ ⎦ . We consider the different

forms of c :
1. The case :x e=

By rule UPDATE, we have ()' '
1 2 1 2; :x e ;μ μ μ μ μ⎡ ⎤⎡ ⎤ = =⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ and ()' '

1 2 1 2; :x e ;ν ν ν ν ν⎡ ⎤⎡ ⎤ = =⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ . If

() varx Lγ = , then by rule ASSIGN, we have :e Lγ − . So by Simple Security, we have

[]() []()1 2 1 2; ;e eμ μ ν ν= ,

So

[] () [] ()1 2 1 1 2 1; : ; :x e xγμ μ μ ν ν ν= =⎡ ⎤ ⎡⎣ ⎦ ⎣∼ e ⎤⎦ .

If () varx Hγ = ,then trivially [] () [] ()1 2 1 1 2 1; : ; :x e xγμ μ μ ν ν ν= = e⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣∼ ⎦ .

2. The case . skip
The result follows immediately from rule NO-OP.

3. The case . 1 2;c c

If []() ' '
1 2 1 2 1 2; , ; ;kc c μ μ μ μ⎡ ⎤→ ⎣ ⎦ then by Lemma 4.4 there exist 0 j k< < and " "

1 2;μ μ⎡⎣ ⎤⎦ such that,

[]() " "
1 1 2 1 2, ; ;jc μ μ μ μ⎡ ⎤→ ⎣ ⎦ ,

and

()" " ' '
2 1 2 1 2, ; ;k jc μ μ μ− μ⎡ ⎤ ⎡→ ⎤⎣ ⎦ ⎣ ⎦ .

Similarly, If []() ' ' '
1 2 1 2 1 2; , ; ;kc c ν ν ν⎡→ ⎣ ν ⎤⎦ , then there exist '0 'j k< and '' ''

1 2;ν ν⎡ ⎤⎣ ⎦ , such that <

[]() ' " "
1 1 2 1 2, ; ;jc ν ν ν ν⎡ ⎤→ ⎣ ⎦ ,

and

() ' '" " ' '
2 1 2 1 2, ; ;k jc ν ν ν− ν⎡ ⎤ ⎡→ ⎤⎣ ⎦ ⎣ ⎦

;

.

By induction, we have '' '' '' ''
1 2 1 2; γμ μ ν ν⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣∼ ⎦ . So by induction again, we have ' ' ' '

1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦

c

.

4. The case . 1 2if then else e c

If :e Lγ − then by Simple Security. If () ()1 1eμ ν= e ()1 0eμ ≠ then have the form

[]() []() ' '
1 2 1 2 1 1 2 1if then else , ; , ; ;e c c c 2μ μ μ μ μ∗ μ⎡ ⎤→ → ⎣ ⎦

and

[]() []() ' '
1 2 1 2 1 1 2 1if then else , ; , ; ;e c c c 2ν ν ν ν ν∗ ν⎡ ⎤→ → ⎣ ⎦

By induction, we have ' ' ' '
1 2 1 2; γ ;μ μ ν ν⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣∼ ⎦ . The case when ()1 0eμ = is similar.

If γ − :e L , we have 1 2if then else : cmde c c Hγ − . Then by Confinement, we have

[] ' '
1 2 1 2; ;γμ μ μ μ⎡ ⎤⎣ ⎦∼ and [] ' '

1 2 1 2; ;γν ν ν ν⎡ ⎤⎣ ⎦∼ .

So ' ' ' '
1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦ .

5. The case . while do e c

JIC email for subscription: info@jic.org.uk

J. Yao, J. Li: Discretional Array Operations for Secure Information Flow 76

Similar to the case . 1 2if then else e c c

6. The case []allocate x e .

We consider the possible types of x . If () x L alias Lγ = . By Simple Security, we have

[] []() [] [](1 2 1 2; ;)x e xμ μ ν ν= e . So ' ' ' '
1 2 1 2; ;γμ μ⎡ ⎤⎣ ⎦ ∼ ν ν⎡ ⎤⎣ ⎦ .

If () x H alias Hγ = , by rule ALLOCATE we have []allocate : cmdx e Hγ − . By the Confinement, we

have ' ' ' '
1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦ .

7. The case []1 2:x e e= .

We consider the possible types of x .

If () x L alias Lγ = , then by rule ASSIGN-ARR we have []1 : x e Lγ − , 2 : e Lγ − . By Simple

Security, we have [] []() [] []()1 2 1 1 2 1; ;x e x eμ μ ν ν= , [] []() ()1 2 2 1 2 2; ;e eμ μ ν ν= .

So by rule UPDATE-ARR, we have () ()' ' ' '
1 2 1 2; ;x xμ μ ν ν⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , So, ' ' ' '

1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣∼ ⎦ .

If () x H alias Hγ = , then by rule ASSIGN-ARR we have []1 2: : cmdx e e Hγ − = . By Confinement,

we have ' ' ' '
1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦ .

8. The case []& :x x e= .

We consider the possible types of x .

If () x H alias Hγ = , then by rule CALIAS we have []& : : cmdx x e Hγ − = , By Confinement, we

have ' ' ' '
1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦ .

If () x L alias Lγ = , then by rule ALIAS we have & : x Lγ − , [] : x e Lγ − . By Simple Security, we

have [] []() [] []()1 2 1 2; ;x e x eμ μ ν ν= [,] []() ()1 2 1 2; & ; &x xμ μ ν ν=

)
. So by rule CALIAS, we have

() (' ' ' '
1 2 1 2; & ; &x xμ μ ν ν⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , So, ' ' ' '

1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦ .

9. The case Case []1 : &x e x= .

We consider the possible types of x .

If () x H alias Hγ = , then by rule CALIAS we have []1 : & : cmdx e x Hγ − = , By Confinement, we

have [] ' '
1 2 1 2; ;γμ μ μ μ⎡ ⎤⎣ ⎦∼ .

If () x L alias Lγ = , then by rule ALIAS we have & : x Lγ − , []1 : x e Lγ − . By Simple Security,

we have [] []() [] []()1 2 1 1 2 1; ;x e x eμ μ ν ν= , [] []() ()1 2 1 2; & ; &x xμ μ ν ν= . So by rule CALIAS, we have

() ()' ' ' '
1 2 1 2; ;x xμ μ ν ν⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , So, ' ' ' '

1 2 1 2; ;γμ μ ν ν⎡ ⎤ ⎡⎣ ⎦ ⎣∼ ⎤⎦

2

.

5. Conclusion
This paper allows arrays as first-class value, we can deal with array of arbitrary values. Our array types are
of the form 1 alias τ τ , This allow us to regard freely discretional array as array of array by alias array. The
soundness of our type system is proved by noninterference.

For the example program in Section 1. If array have types ia alias H H and , the information
flow from the to alias

 alias L L

ia ix are secure.

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 1 (2006) 2, pp 67-77 77

In the future, we expect new type systems to support for secure information flow in more expressive
languages. More generally, we expect to make secure information flow type system practical. The works of
Stephen Chong, A.C.Myers [15] and Peng Li, Steve Zdancewic [16] are promising.

6. References
[1] A.Sabelfeld and A. C. Myers, Language-based information-flow security. IEEE Journal on Selected Areas in

Communications, special issue on Formal Methods for Security, 21(2003)1, 5-19.
[2] D. E. Denning and P. J. Denning, Secure Information Flow in Computer Systems. Purdue University Ph.D. Thesis,

1975.
[3] D. E. Denning and P. J. Denning, A Lattice Model of Secure Information Flow. Communications of the ACM,

19(1976)5, 236-242.
[4] D. E. Denning and P. J. Denning, Certification of programs for secure information flow. Communications of the

ACM, 20(1977)7, 504-513.
[5] D. Volpano, G. Smith, C. Irvine, A Sound Type System for Secure Flow Analysis. Journal of computer security,

4(1996)3, 167-187.
[6] D. Volpano, G. Smith, A type-based approach to program security. in Proc. TAPSOFT'97, vol.1214 of LNCS,

Springer-Verlag, Apr. 1997, pp. 607-621.
[7] G. Smith, D. Volpano, Secure information flow in a multi-threaded imperative language. in Proc. ACM Symp. on

Principles of Programming Languages, Jan.1998, pp. 355-364.
[8] B. C. Pierce. Types and Programming languages, The MIT Press, Cambridge, Massachusetts, London, England.

QA 76.7.P54, 2002
[9] A. Banerjee and D. A. Naumann, Secure information flow and pointer confinement in a Java-like language. in

Proc. IEEE Computer Security Foundations Workshop, June 2002, pp. 253-267.
[10] A. Diwan, S. M. Kinley, B.Moss, Type-based alias analysis. In the ACM SIGPLAN Conference on Programming

Language Design and Implementation, June 1998, pp. 106-107.
[11] Z. Deng and G. Smith, Lenient Array Operations for Practical Secure Information Flow. 17th IEEE Computer

Security Foundations Workshop, Pacific Grove, California, June 2004, pp. 115-124.
[12] S. Zdancewic and A. C. Myers, Secure Information Flow via Linear Continuations. Higher Order and Symbolic

Computation, 5(2002)2-3, 209-234.
[13] Francois Pottier and Vincent Simonet, Information Flow Inference for ML. in Proc. ACM Symp. on Principles of

Programming Languages, Jan.2002, pp. 319-330.
[14] Hanne Riis Nielson and Flemming Nielson, Semantics with Applications a Formal Introduction. July, 1999.
[15] S. Chong and A.C.Myers, Security Policies for Downgrading. Proceedings of the 11th ACM Conference on

Computer and Communications Security (CCS), Washington, DC, USA, October 2004, pp. 189-209.
[16] P. Li and S. Zdancewic, Downgrading Policies and Relaxed Noninterference. In Proc. 32nd ACM Symp. On

Principles of Programming Languages (POPL), January 2005, pp. 158-170.

JIC email for subscription: info@jic.org.uk

