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Abstract. Adaptive inverse control of linear system with fixed learning rate least mean square (LMS) 
algorithm is improved by varying the learning rate. This variable learning rate LMS algorithm is proved to be 
convergent by using Lyapunov method. It has better performance especially when there is noise in command 
input signal. And it is simpler than the Variable Step-size Normalized LMS algorithm. A water box 
temperature control example is quoted in this paper. Simulation results are carried out and show that the 
adaptive inverse control with variable learning rate LMS is better than that with the fixed learning rate LMS 
algorithm and the Variable Step-size Normalized LMS algorithm. 
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1. Introduction 
The adaptive inverse control approach proposed by B. Widrow in 1986 [1] has more and more 

applications [2, 3, 4]. In this control scheme the plant model and inverse model are determined by adaptively 
adjusting the model parameters. So the model can adaptively change for a time-varying plant. It usually uses 
gradient descent method to get LMS algorithm in linear system and back-propagation (BP) algorithm in 
nonlinear system. Both the LMS and the BP algorithms use fixed learning rate (FLR). 

The adaptive filter based on LMS algorithm proposed by Widrow and Hoff is frequently used in many 
fields [4, 5]. But the useful signal is almost always disturbed by noises, the LMS algorithm with FLR will 
produce misadjusted noise. And the misadjustment is proportional to the fixed value of learning rate. So 
reducing the learning rate can reduce misadjusted noise but meanwhile can also reduce the convergence 
speed. Therefore, there is a trade-off between the convergence rate and convergence precision of fixed 
learning rate LMS algorithm. 

Many approaches have been proposed to mitigate this contradiction by varying the learning rate (or step-
size), such as Variable Step-size LMS algorithm [6], Robust Variable Step-Size LMS algorithm [7], 
Complementary Pair Variable Step-size LMS [8], and Variable Step-size Normalized LMS (VS NLMS) [9]. 
And the last one has been proved to be better than the others used in adaptive inverse control systems [10]. 
But the algorithm is computationally expensive. 

In many production fields, the input signal can’t avoid being disturbed. The noise therefore affects the 
control performances and sometimes causes damages even leads to casualties. But there are few literatures 
considering input signal noises for adaptive inverse control.  

In this paper, we proposed a simple variable learning rate (VLR) LMS algorithm and then proved its 
convergence. After that we used it for adaptive inverse control to improve the performance of system with 
disturbed command input signal. An example showed the algorithm is robust to the input noise. 

The remainder of this paper is structured as follows. Section 2 reviews the adaptive inverse control with 
FLR LMS algorithm. Section 3 proposes a VLR LMS algorithm and proves its convergence by using 
Lyapunov stability theorem. An adaptive inverse control example with FLR and VLR LMS and the VS 
NLMS [9] algorithm and its simulation results will be given in Section 4. Finally, Section 5 concludes this 
paper. 
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The basic adaptive inverse control scheme is shown in Fig. 1. Here the plant inverse model is obtained 
off-line which can also be got on-line [1]. In this paper the off-line modeling method is used because we can 
select a simple modeling signal , and the adaptive off-line process can more quickly give us an inverse 
model than on-line. In Fig. 1  is plant, 

mr
P M  is the plant model,  is the controller. C r  is the command input 

signal and dist  is presented as the disturbance of plant output.  is the inverse modeling signal.  
denotes a suitable number of iterations which can also be replaced by a reference model. An arrow through a 
rectangular box denotes an adaptive filter. There are two adaptive filters: one in (a) for plant modeling, and 
the other in (b) for plant inverse modeling. Filters are used as models in adaptive inverse control systems. 
The process of filter coefficients adjustment is the process of building models. In this paper we discuss linear 
adaptive inverse control. The inner structure of an adaptive filter in Fig. 1 is shown in Fig. 2. 

mr Delay

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Linear adaptive filter 

 
 

 

 Fig. 1 Adaptive inverse control 

The adaptive process in (a) (we don’t consider the controller C for the moment) can be described as 
follows. For a linear causal FIR filter (which in (a) is plant model) shown in Fig. 2, the output of the k th 
input vector is 

WX T
kky =                                                                         (1) 

where  and  are the th input vector and the 
weights vector, respectively. So the plant model output can be described using input signal and adjustable 
parameters. We can adjust these parameters by minimizing the mean square error which is caused by desire 
output and real plant output. Then a best least square model to the unknown plant can be produced when the 
mean square error is minimum. Assume the expect output is , the th output error is 

T
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In order to minimize this error, we define the mean square error (MSE) as 
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kk EJ ε= .                                                                      (3) 

Then the gradient vector can be obtained by differentiating  with respect to weights vector kJ
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A rough estimation is 

kkk Xε−=∇                                                                        (5) 

In light of the steepest descent algorithm, let the weights update along the gradient descent. So we derive 
the following as 
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μ  is a positive constant called learning rate or step-size.  where parameter 

We then use (6) to adjust the model coefficients until the MSE gets to minimization. The modeling 
process has been completed and produced a best least square plant model so that we can use this model for 
inverse modeling. It cascades with the adaptive filter （That is the inverse model we want to train.） in (b), 
and the filter’s output compared with the delayed modeling signal which produces an error, too. Undergoing 
similarly adaptive process as the above, when the error gets to minimization, a best least square inverse 
model is achieved. After the adaptive process of inverse modeling has been finished, the inverse model can 
be used as the controller in (a) (the dotted rectangular box) to control the system. It cascades with the plant 
and this will have a transfer function which will realize our control purpose. This series transfer function can 
realize tracking desired signal. 

The plant used for adaptive inverse control must be stable or else we should first stabilize it using 
classical control methods. This can ensure the inverse model exists. If the plant is minimum-phase, the delay 
in (b) is unit one; but if the plant is nonminimum-phase, an appropriate delay is necessary in order to obtain 
causal inverse model. 

Adaptive inverse control not only can realize plant output tracking of command input signal itself but 
also can track a glided command input. This requires us to use a smooth model which is also called reference 
model. The control can be achieved by changing the delay in (b) with the expected reference model and use 
the corresponding “model reference inverse” as a controller to cascade with the plant. Then the plant output 
will approach the dynamic response of reference model.  

The learning rate in (6) is important for the weights update. It determines whether the weights update 
algorithm converges or not, and affects the convergence rate. If μ  is too large, the algorithm maybe not 
converge; if μ  is too small, the weights update very slowly which leads to long training sequence. In FLR 
LMS adaptive inverse control μ  is constant throughout all the adaptive process. 

μ  must satisfy the following inequality [11] In order to assure the stability of LMS algorithm 

)(3
20
Rtr

<< μ                                                                      (7) 

where  is the input correlation matrix of the adaptive filter. ][ T
kkE XXR =

3. VLR LMS Algorithm 
The usual adaptive inverse control discusses disturbances happened to the plant output or the system 

output. In this paper we mainly focus on the input noises which appear in the command input signal. The 
usual FLR LMS algorithm is not robust to the input signal noises so it can degrade the system performance, 
and in some cases drive the system to instability.  Here we will use Lyapunov stability theorem to deduce a 
VLR LMS algorithm which is robust to the input disturbances. 

A linear single output adaptive filter satisfies (1) and (2). Still using gradient descent approach, 
according to the LMS algorithm we should minimize the cost function 

2)(
2
1
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by adapting the weights vector W . So considering a Lyapunov function as: 
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and ε  is time-varying along with weights updating. The time derivative of the Lyapunov function  is 
given by 
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Under this condition we can obtain a VLR LMS algorithm in which the weights update according to 
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Next we will deduce this algorithm and prove its convergence. 
Theorem. If an arbitrary initial weights vector  is updated by )0(W

∫+=
t

dtt
0

)0()( WWW                                                               (13) 

where 

X
X

W ε2

1
=                                                                      (14) 

Then ε  converges to zero under the condition that  exists along the convergence trajectory. W
Proof: According to the requiring of Lyapunov global stability theorem, for a continuous time-varying 

system, our Lyapunov function ),( tV ε ε has satisfied that it has first continuous partial derivatives for  and 
, respectively, and 0),0( =tVt 0=ε. Next we will prove  is Lyapunov globally uniformly asymptotically 

stable in the real number area . R
0≠ε)(εV  is positive definite and bounded for all . We know from (9) that Firstly, we prove that 

0
2
1)( 2 ≥= εεV                                                                    (15) 

0≠ε 0=ε0)( >εV 0)( =εVwhere  for all  and  if . Because the plant is internal stable or has been 
stabilized,  and yd )(εV are all stable outputs. So the Lyapunov function  is bounded if the input signal is 
bounded. 

Secondly, we prove that the derivative for  of Lyapunov function  is semi negative definite and 
bounded. Substitution of (14) into (11), we have 

tVt

02 ≤−= εtV                                                                      (16) 

where  for all 0<tV 0≠ε  and  if 0=tV 0=ε . 

∞→),( tV ε∞→ε        Thirdly, we prove that when , there exists . Because ε  is a scalar for linear 
adaptive filter, it satisfies 

εε =                                                                            (17) 

The condition is satisfied.  
y is Lyapunov globally asymptotically stable in real number area R  which means So  0=ε  is 
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tending to . That is to say the model is close to the plant so that the weights update algorithm is convergent. d

The weights update law in (13) is a batch update law. Analogously we can get the instantaneous gradient 
descent algorithm for weights updating. For the th input signal we have k

kk
k

k X
X

W ε2

1
=                                                                  (18) 

So the update equation is substituted by 
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Where η  is a constant. Analogously, the instantaneous weights update algorithm is convergent as well as the 
batch one. 

Compared to (6) we have 

2
kX
ημ =                                                                        (20) 

The fixed learning rate is replaced by variable learning rate and the VLR LMS algorithm is shown in 
(19). It is similar to the VS NLMS algorithm where η  here is a constant while that of VS NLMS is variable. 
But the later therefore has three parameters to select heuristically. So it is more complex than the VLR 
algorithm which also saves many computations. 

Here constant η  is selected heuristically like μ  in FLR LMS algorithm. The excellence of this 
algorithm will be shown in part 4 where we always select μη =  to detect the differences between FLR 
LMS and VLR LMS algorithms. The results show that when the input signal is disturbed by noises we can 
obtain better performances using this VLR LMS algorithm. 

4. Simulation Results 
Fig. 3 is a water temperature control system [4]. Assume that the length of pipe between mixing valve 

and tank causes a time delay. So the minimum-phase and nonminimum-phase plant transfer functions have 
been got as follows 
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and 
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respectively. We use FLR and VLR LMS and VS NLMS adaptive inverse control methods to control the 
temperature of water tank between 45  and 55  and compare their differences. C° C°

We use method dither C [1] to build the plant model and select the same filter length and constants η  , 
μ  both in FLR and VLR LMS filters. The reference signal is a first-order Markov process disturbed by a 
white noise with mean 0 and variance 1. The simulation results are shown from Fig. 4 to Fig. 9. 

The plant modeling square errors of minimum-phase plant are given in Fig. 4. It can be seen that the 
convergence rate and precision have been improved by using VLR LMS algorithm. By further simulation, if 
we increase the learning rate to 0.85, the FLR LMS algorithm becomes not convergent while the VLR LMS 
algorithm still has small modeling error. The VS NLMS algorithm converges more slowly than VLR 
algorithm because of computing complexly.  Fig. 5 shows the convolution results of the plant and plant 
inverse model using FLR and VLR LMS and VS NLMS algorithm, respectively. Because the convolution of 
ideal plant and plant inverse model should be one. It applies us a criterion to observe the precision of plant 
inverse modeling if we convolute the real plant and the inverse model. In Fig. 5, the convolution amplitude 
of FLR LMS is approximate 0.6 while that of VLR LMS is nearly 1 and the VS NLMS is a little over 1. So 
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we can see that the second and the third inverse models are almost ideal. Then the inverse model is used as 
controller to control the water box temperature. The three control results are shown in Fig. 6 respectively. 
We can observe that the output of FLR LMS control method has been out of the required range 45 -55  
because of the command input noise while VLR LMS and VS NLMS get nearly perfect tracking 
performance. But the VS NLMS is a little worse than VLR in tracking details. The VLR LMS and VS 
NLMS are robust to the input disturbance. 

C° C°

Similarly, Fig. 7 to Fig. 9 shows us the nonminimum-phase plant simulation results. The performances of 
VLR LMS are also better than those of FLR LMS and VS NLMS algorithm. 

 

Mixing 
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Fig. 3 Tank temperature control 
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Fig. 4 Minimum-phase plant modeling square error (Time (0.1s)) 
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Fig. 5 Precision of minimum-phase plant inverse model (Time (0.1s)) 
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Fig. 6 The tracking ability with white disturbance of minimum-phase plant (Time (0.1s)) 
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Fig. 7 Nonminimum-phase plant modeling error (Time (0.1s)) 
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Fig. 8 Precision of nonminimum-phase plant inverse model (Time (0.1s)) 
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Fig. 9 The tracking ability with white disturbance of nonminimum-phase plant (Time (0.1s)) 

5. Conclusions 
In this paper, a variable learning rate (VLR) LMS algorithm for linear adaptive inverse control was 

applied. And we have proved it is convergent using Lyapunov global stability theorem. The simulation 
results show this algorithm uses for adaptive inverse control is effective and has faster modeling rate, smaller 
error and is more precise compared to fixed learning rate (FLR) LMS and the VS NLMS algorithm. The 
algorithm is still effective in face of the problem of command input signal disturbed. It is expected to be 
extended to MIMO nonlinear systems using VLR BP algorithm in adaptive inverse control. 
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