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Abstract. In this paper an adaptive sliding mode controller is presented for a class of master-slave chaotic 
synchronization systems with uncertainties. The concept of extended systems is used such that continuous 
control input is obtained using a sliding mode design scheme. By comparing with the results in the existed 
literatures, the results show that the master-slave chaotic systems with uncertainties can be synchronized 
accurately by this controller. Illustrative examples of chaos synchronization for uncertain Willis system are 
presented to demonstrate the superiority of the obtained results. 
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1. Introduction 
An aneurysm is a localized dilatation of blood vessels caused by congenital, traumatic, arteriosclerotic or 

other factors. Congenital and traumatic aneurysms are most commonly found in cerebral blood vessels, and 
are a major cause of stroke-related morbidity and mortality. The pathogenesis of aneurysm formation and 
rupture is not clearly understood and it depends on many factors. Many papers consider the mathematical 
formulation of the blood flow some of them in relation to aneurysm. Different models of studying aneurysms 
have been considered in the literature. An important factor is the nonlinear nature of wall elasticity and some 
mathematical questions are considered [1]. Recently a modified nonlinear equation was introduced [2] to 
study the blood flow inside an aneurysm of the circle of Willis. A different biomechanical model of the flow 
in the circle of Willis is presented [3]. A two-dimensional nonlinear mathematical model is described [4] to 
study the aneurysm .now it is generally accepted that turbulence, chaos and fractals frequently appear in 
medicine [5]. Thus we note that turbulent flow is observed within an aneurysm, as evidenced by reduced 
bruits [6,7], where the inter action between the aneurysm vibration and the blood flow is recognized as 
having the characteristic features of a nonlinear feedback system, and existence of chaotic solutions [8]. 
Chaos synchronization has received increasing attention. Many methods have been presented for the 
synchronization of chaotic system such as periodic parametric perturbation method [9,10], drive-response 
synchronization method [11], adaptive control method [12,13], variable structure (or sliding mode) control 
method [14,15], backstepping control method [16], and control method [17]. Basically, the chaos 
synchronization problem means making two systems oscillate in a synchronized manner. Given a chaotic 
system, which is considered as the master system, and another identical system, which is considered as the 
slave system, the dynamical behaviors of these two systems may be identical after a transient when the slave 
system is driven by a control input. 

∞H

In this paper, the organization of this paper is as follows. In Section 2, the master-slave chaos 
synchronization system is described; the proposed controller design methodology is presented in Section 3; 
Section 4 presents simulation results. 

2. Nonlinear model of blood flow in aneurysm 
Using the electric analogue of [18], and denoting by the velocity of blood flow inside aneurysm we 

get the following equation governing this velocity  
,2i
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where E ′  is central blood pressure; I  is velocity of blood flow in the parent blood vessel; i  is velocity of 
blood flow  in blood vessel at site of aneurysm; is velocity of blood  flow inside aneurysm; is 
elasticity of segment of vessel wall;  is elasticity of aneurysm wall; e  is pressure in aneurysm; 

,1i ,2i 1C

2C R  is 
resistance to flow; and V  is pressure in parent blood vessels. The expression for e  has been obtained 
experimentally in latex and rubber aneurysm models, and it is of the form e  thus 
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∫= dttie ))(( 2ϕ )cos( tF ω=′  represents the rate of change of the central blood pressure, F  is 

equivalent to the pulse pressure, and v is the inverse of the cardiac frequency. Note that any change in F  
produces a change in both pressure and blood pressure. To simplify the notation, set, Hence Eq.(1) is now 
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Fig.1. A particular solution of aneurysm equation with initial x(0)=0.5 ; x’(0)=1;r=1.5;q=2.5 

For different initial conditions, both models depend on the velocity of the blood flow inside the 
aneurysm see Fig. 1, Fig. 2 and Lyapunov exponents see Fig. 3. Parameters are 

1,1.0,01.0,2,3,1 ====== ωpFcba . 

Now consider a more general model: aneurysm model[19] that is, 0== rq  in(2):  

)cos(32 wtFcxbxaxxpx =+−++ , ( >0),                                (3) cbap ,,,
with positive constants, is a biomathematical model for the blood flow inside an aneurysm of the 
circle of Willis. For some medical questions related to this model, here u  represents the velocity of the 
blood flow inside the aneurysm. It is a second-order nonlinear ordinary differential equation with periodic 
forcing term. The mathematical analysis of this biomathematical model allows us to obtain some basic 

Fcba ,,,
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information on the evolution of the aneurysm. Our model is in accordance with some clinical observations. 
For instance, either an increment or a sudden change in the blood pressure leads to chaotic mathematical 
solutions and hence to turbulent flow inside the aneurysm, with a risk of rupture of the aneurysm. The same 
conclusion applies to an abrupt change of the cardiac frequency. For different initial conditions, both models 
depend on the velocity of the blood flow inside the aneurysm see Fig.4. Fig.5. Fig.6.and Lyapunov 
exponents see Fig.7. Parameters are 1,1.0,01.0,2,3,1 ====== ωpFcba . 

 
Fig.2. A particular solution of aneurysm equation with initial x(0)=0.5 ; x’(0)=1;r=1.5;q=0.5 

 
Fig.3. Lyapunov exponents of Willis system (LE1=0; LE2=-0.46225;LE3=-8.1788;LD=0) 

 
Fig.4. A particular solution of aneurysm equation with initial x(0)=3 and x’(0)=0.4 

JIC email for subscription: info@jic.org.uk 



Li Li, Yukun Sun: Chaos Synchronization of Willis Aneurysm Systems 176
 

 
Fig.5. A particular solution of aneurysm equation with initial x(0)=0.5 and x’(0)=0.01 

 
Fig.6. A particular solution of aneurysm equation with initial x(0)=0.5 and x’(0)=1 

 

 
Fig.7. Lyapunov exponents of Willis system (LE1=0.24662;LE2=0;LE3=-0.64662;LD=2.3814) 

The formation and rupture of aneurysms is a significant medical problem, but is not clearly understood. 
Most intracranial aneurysm is located in the circle of Willis. We consider a nonlinear mathematical model 
that simulates the blood flow inside the aneurysm, one of the relevant factors in the evolution of an aneurysm. 
Different nonlinear analysis like chaos would help to understand some medical aspects of aneurysms of the 
circle of Willis. In order to improve the performance of the dynamic of the system or avoid the chaotic 
phenomena, we need to control a chaotic system to a periodic motion which is beneficial foe working with 
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particular condition. Very recently much interest has been focused on this type of problem, controlling chaos, 
Chaos synchronization is consider for medical problem in this paper.  

3. Sliding model control  
Consider the following chaotic systems: 

Buxfx += )(                                                                       (4) 
nRx∈  is the state vector,  is the nonlinear function, nn RRf →: nRB∈ is the input matrix ,and Ru∈ is 

the control signal. We assume that the system(3) behaves chaotically without control. The unstable fixed 
point of the chaotic system  satisfies fx 0)( =fxf . 

We introduce a state vector , and then the chaotic system (4) can be written as  fxxy −=

Buygy += )(                                                                 (5) 
We divide the function  into the two parts as follows, g

BuyhAyy ++= )(                                                             (6) 
where is the linear part and  is the nonlinear part of . Ay )(yh )( yg

The control problem considered in this paper is that for different initial conditions of systems(4) and 
(5),the two coupled system,i.e.the master systems(4) and the slave systems(5),to be synchronized by 
designing an appropriate control  which is attached to the slave systems(5) such that )(tu

0)()(lim →−
∞→

tytx
t

,where ⋅  is the Euclidean norm of a vector. 

The controller decides the signal depending on the switching function syδ = 1 ns R ×∈ ,the condition 
0=δ  indicates the sliding surface ,the sign ofnRsyy ⊂==Γ }0:{ δ decides the control signal u .if the 

controlled orbit is in the sliding model, the following condition is satisfied .we use Lyapunov 
function designs a sliding controller that guarantees to keep the orbit being the sliding model.  

0== δδ

4. Adaptive sliding model controller design  
Let the error state be ,and nixye iii ,,2,1, =−= ),(),(),( txftxefteg −+= ,the error dynamic 

equations is  

1i ie e += ; 1 1,i n≤ ≤ −  

),()()(),(
)()()(),(),(

tutdxefteg
tutdyftxftyfxye nnn

+++Δ+=
++Δ+−=−=

                                  (7) 

Using the concept of extended systems, the standardized state space equations of the error states can be 
obtained as 
 

1i ie e += ; 1 1,i n≤ ≤ −  

,)()()(),( 1+=+++Δ+= nn etutdxeftege                                          (8) 
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Based on the control law proposed by Chen and Lin [19], the sliding surface can be defined as 
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where denotes the initial state of ,Eq.(8) can also be formulated as )0(1+ne 1+ne
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with initial condition and the sliding mode dynamics can be described by the following 
system of equations: 
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with the initial states being  The design parameters  can be determined by 

choosing the eigenvalues of  such that the corresponding characteristic polynomial. 
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Let the control law be represented as: 

sweq uuu +=  

where is the equivalent control and is the switching control. Suppose the approaching speed can be 
described by an adaptive law, then the reaching law can be chosen such that  

equ swu

             ,                                                         (13) )()ˆ( ssignks +−= β

where denote the sign function , k is positive constant value and  is estimated parameter which 
satisfies the following adaptive  

)(⋅sign β̂

         0
ˆ)0(ˆ,ˆ βββ == s                                                          (14) 

where  is the bounded positive initial condition of . 0β̂ β̂
From Eqs.(9) and(13),it can be found that  
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the differential equation of control signal  

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, Vol. 1 (2006) No. 3, pp 173-182 179
 

∑
+

=

−+−++Δ+−=
1

1

)()ˆ())()(),(()(
n

j
jj ecssignktdxefteg

dt
dtu β                          (16) 

the system uncertainty )( xef +Δ and the external disturbance  are unknown and implemented 
control input is described by  
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5. Adaptive synchronization of Willis aneurysm systems  

Willis aneurysm systems(3), Our goal is to control the system output x tracking the reference signal , 

therefore, the problem is to design a controller  so that item converges to zero. 

dx
)(tu dxx −

To see the effectiveness of the proposed method and ideal, let us look at the master-slave Willis system. 
Consider two coupled Willis systems as follows: Let , the equation above is equal to  xxxxx === 1211 ,
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The control input is attached to the second equation of the slave system (13) and the slave system is 
perturbed by an uncertainty term  and interfered with a disturbance , added to its second equation. 
Let the error states are

)(tu
)( yfΔ )(td

111 xye −= 222 xye −= , Subtracting (18) from (19) yields the synchronization error 
dynamics as: 
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Then, the standardized state space equations can be described as 
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Let the sliding surface be defined as 

dtecececees
t

)()0( 11220 3333 +++−= ∫                                           (22) 

The eigenvalues corresponding to the sliding surface can be decided by and these eigenvalues dominate 
the converging rate of the error dynamics and they can arbitrarily be assigned. Choose the reaching law as in 
Eq. (3). From Eqs. (3), (21) and (22), the control input is determined as 
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Fig. 8. Time responses of Willis chaos synchronization: master and slave system outputs are x1 and y1, respectively. 

 
Fig. 9. Time responses of Willis chaos synchronization: master and slave system outputs are x2 and y2, respectively. 

 
Fig. 10. Time responses of Willis chaos synchronization: master and slave system outputs are x1 and y1, respectively. 

The control u(t) is activated at 60 s. 
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Fig.11. Time responses of Willis chaos synchronization: master and slave system outputs are x2 and y2, respectively. 

The control u(t) is activated at 60 s 

 
Fig. 12. The time response of error states. The control u(t) is activated at 20 s. 

6. Conclusion 
This paper presents a method to design an adaptive sliding mode controller for aneurysm model chaos 

synchronization with system uncertainties and disturbance. Based on the Lyapunov stability theory, an 
adaptive sliding mode controller is designed for the regulation of the error state vector to a desired point in 
the state space. To design the proposed control scheme, the requirement of the bound information of the 
uncertainties is not need. According to the simulations, the proposed method can be successfully applied to 
synchronization problems of aneurysm model chaos. 

The derived controllers are robust so that the closed-loop system is stable in the presence of uncertainties 
and disturbance. 

The chattering phenomenon of conventional switching type sliding controls does not occur in this study. 
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