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Abstract. In this paper, a fuzzy inventory problem with multiple commodities is casted into a dynamic pro-
gramming model with continuous state space and decision space. In order to solve the dynamic programming
model, genetic algorithms are used to get samples of the optimal cost functions, and then neural networks are
trained to approximate the optimal cost function on a randomly generated sample set, which may bypass “the
curse of dimensionality”. A hybrid intelligent algorithm is thus produced to get the optimal cost functions
functions that represented by neural networks. Lastly, a numerical example is given for illustrating purpose
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1 Introduction

In the past three decades, fuzzy inventory systems have received more and more attention with the development
of fuzzy set theory. In literature, EOQ models with fuzzy parameters were discussed by many researchers (e.g.
Chen et al. [5] Park [24], Roy and Maiti [25] [26], and Yao and Lee [32]. Fuzzy multi-stage inventory problems
were also considered by some researchers (e.g., Kacprzyk and Staniewski [14], Roy and Maiti [27], Liu [19]). As
far as I know, high dimensional dynamic inventory system with varying fuzzy demands is a new and challenging
work.

This paper investigates the high dimensional dynamic inventory system with varying fuzzy demands. When
the decision criterion is to minimize the fuzzy expected value of the total cost incurred over the horizon, this
problem is formulated as a dynamic programming model with continuous state and decision space. Traditional
method for solving this model is to discretize the continuous state components uniformly so that the optimal
cost functions that characterize the solutions need only be solved over a finite number values of the state vector
(grid points). But the use of a full tensor-product grid may lead to “the curse of dimensionality”, which limit the
practical applications of dynamic programming to low dimensional problems.

In order to deal with the curse of dimensionality, we use a neuro-dynamic programming approach whose main
theme is the use neural networks to approximate the optimal cost functions and then to guide decision-making. It
outgoes the traditional methods in the following two aspects: (i) randomly generated samples versus uniform grid
points for tensor product; and (ii) compact representation versus grid points with interpolation representation of
the optimal cost function. And this methodology has significant potential as a general approach to approximately
solve a wide variety of complex Markov decision problems. For more expositions to neuro-dynamic program-
ming with its successful applications, the reader may consult the book by Bertsekas and Tsitsiklis [2] and the
literature [3][6][23][28].
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This paper is arranged as follows. Section 2 recalls the definition of the expected value operator of fuzzy vari-
ables. Section 3 describes and formulates a multi-commodity inventory system with varying fuzzy demands as
problem as a dynamic programming model with continuous state and solution spaces. Then Section 4 discusses
how to approximate the Q-factors, how to compute the optimal cost for a given state, and how to approximate
the optimal cost functions, thus producing a hybrid intelligent algorithm for solving the fuzzy dynamic program-
ming model. Lastly, a numerical algorithm is presented for illustrating the effectiveness of the hybrid intelligent
algorithm.

2 An Introduction to Credibility Theory

Since its introduction in 1965 by Zadeh [33], fuzzy set theory has been well developed and applied in a wide vari-
ety of real problems. Possibility theory was proposed by Zadeh [34] in 1978, and developed by many researchers
such as Dubois and Prade [8][9]. Although possibility measure has been widely used, it has no self-duality prop-
erty. However, a self-dual measure like probability is absolutely needed in both theory and practice. The the
expected value of a fuzzy variable has been defined in many ways. Dubois and Prade [7] defined the expected
value operator as an interval that applicable to only upper-semi-continuous fuzzy numbers. Heilpern [12] defined
the expected value operator via a random set that is applicable to continuous fuzzy numbers, Yager [30][31]
defined a expected value operator that is applicable to discrete fuzzy variables. That is, an general expected value
operator that applicable to both continuous fuzzy variables and discrete fuzzy variables is also absolutely needed
in both theory and practice.

Let ξ be a fuzzy variable with membership function µ. In order to deal with fuzzy event, Liu and Liu [17]
gave the concept of credibility measure by

Cr{ξ ∈ B} =
1
2

(
sup
x∈B

µ(x) + 1− sup
x∈Bc

µ(x)
)

for any set B of real numbers. Conversely, if ξ is a fuzzy variable, then its membership function is derived from
the credibility measure by

µ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ R.

It is obvious that the credibility measure is self dual, i.e., Cr{A}+ Cr{Ac} = 1 for any A ∈ P(Θ).

Remark 1 (Gao and Liu [10]) A fuzzy event may fail even though its possibility achieves 1, and hold even though
its necessity is 0. However, the fuzzy event must hold if its credibility is 1, and fail if its credibility is 0.

Based on the credibility measure, we have the expected value operator as follows.

Definition 1 (Liu and Liu [17]) Let ξ be a fuzzy variable. The expected value of ξ is defined as

E[ξ] =
∫ ∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr, (1)

provided that at least one of the two integrals is finite.

Let ξ and η be independent fuzzy variables. Then for any real numbers a and b, we have E[aξ + bη] =
aE[ξ] + bE[η].

Example 1 The expected value of a triangular fuzzy variable (r1, r2, r3) is

E[ξ] =
1
4
(r1 + 2r2 + r3).

JIC email for subscription: info@jic.org.uk



Journal of Information and Computing Science, 1(2006) 4, pp.235-244 237

Example 2 The definition of expected value operator is not only applicable to continuous case but also discrete
case. Assume that ξ is a discrete fuzzy variable whose membership function is given by

µ(x) =





µ1, if x = a1

µ2, if x = a2

· · ·
µm, if x = am.

Without loss of generality, we also assume that a1 ≤ a2 ≤ · · · ≤ am. Definition 1 implies that the expected value
of ξ is

E[ξ] =
m∑

i=1

wiai (2)

where the weights wi, i = 1, 2, · · · ,m are given by

w1 =
1
2

(
µ1 + max

1≤j≤m
µj − max

1<j≤m
µj

)
,

wi =
1
2

(
max
1≤j≤i

µj − max
1≤j<i

µj + max
i≤j≤m

µj − max
i<j≤m

µj

)
, 2 ≤ i ≤ m− 1

wm =
1
2

(
max

1≤j≤m
µj − max

1≤j<m
µj + µm

)
.

It is easy to verify that all wi ≥ 0 and
m∑

i=1

wi = max
1≤j≤m

µj = 1

since any fuzzy variables defined on a possibility space are normalized.

For more detailed expositions on the credibility theory, the reader may consult the book [21][22].

3 Problem Description and Formulation

Multi-item dynamic inventory system with stochastic demands has been discussed by many researchers such
as Johnson [13] and Veinott [29]. Here, we discuss a multi-item dynamic inventory system with varying fuzzy
demands with the assumption that the system is reviewed periodically and decisions are made at the beginning
of each stage. First of all, we give some notations as follows.

N : problem horizon which is divided into N stages;

θ : discount rate;

x : state vector;

d : order quantity;

ξn : fuzzy demands vector at stage n;

cn(d) : ordering cost function at stage n;

ln(x) : inventory cost function at stage n.
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Let x̂ = (x1,x2, · · · ,xN ) be a sequence of state vectors, and d̂ = (d1,d2, · · · ,dN ) be the corresponding
decision sequence. That is, the inventory level at stage n is xn, and if we choose a decision (ordering quantity)
dn, then we move to stage n + 1 with a fuzzy state xn+1 = xn + dn − ξn. As a result, incurred the immediate
costs including a linear ordering cost cn · dn and an fuzzy inventory cost ln(xn + dn− ξn). Simultaneously, the
future decisions as well as future costs, which is fuzzy due to the fuzzy state xn+1, are also affected. So we must
take into account both the immediate and future costs. Then the objective function at stage n is as follows,

Jn(x̂; d̂) =
N∑

i=n

θi−nE[ci(di) + li(xi + di − ξi)] (3)

with the state transition equation
xn+1 = xn + dn − ξn. (4)

By Bellman’s principle of optimality, we can formulate the inventory system as the following fuzzy dynamic
programming model,





fN (x) = min
d≥0

{cN (d) + E [lN (x + d− ξN )]}
fn(x) = min

d≥0
{cn(d) + E [ln(x + d− ξn)] + θE [fn+1(x + d− ξn)]}

n = 1, 2, · · · , N − 1.

(5)

Let
Fn(y) = cn · y + E[ln(y − ξn)] + θE[fn+1(y − ξn)], (6)

for n = 1, 2, · · · , N, and fN+1(y) = 0. Then we have

fn(x) = min
y≥x

Fn(y)− cn · x. (7)

Now, we assume that ξi,n−1 are triangular fuzzy number (ai,n−1, bi,n−1, ci,n−1) with ci,n ≥ ci,n−1 − ai,n−1

for all i and n. Then we may restrict xi,n−1 +di,n−1 to the interval [an−1, cn−1], otherwise, it would cause more
inventory cost or shortage cost. That is, we have

yi,n−1 = xi,n−1 + di,n−1 ∈ [ai,n−1, ci,n−1]

and
xi,n = xi,n−1 + di,n−1 − ξi,n−1 ∈ [ai,n−1 − ci,n−1, ci,n−1 − ai,n−1].

In brief, we can restrict the state x to a hypercube Πn which is determined by the former stage n − 1, and
y = x + d to a hypercube Ξn determined by the former and current stage. In view of this, we need only to solve
the model {

fn(x) = min
y≥x

Fn(y)− cn · x
x ∈ Πn,y ∈ Ξn.

(8)

4 Hybrid intelligent algorithm

For practical use of the fuzzy dynamic programming model, we design a hybrid intelligent algorithm with rea-
sonable computational cost by using neural network and genetic algorithm.
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4.1 Fuzzy Simulation

Fuzzy simulation technique was proposed by Liu and Iwamura [16][17], and the reader may consult the book by
Liu [21][22]. We know, the function Fn(y) involves uncertain functions like E[g(y − ξ)]. Due to complexity,
we design a fuzzy simulation procedure for computing the uncertain functions.

Fuzzy Simulation for Cr {g(y − ξn) ≤ 0}
Step 1. Randomly generate uink from the ε-level set of ξin, i = 1, 2, · · · ,m, respectively, where k = 1, 2, · · · ,M

and ε is a sufficiently small positive number.

Step 2. Set νk = mini {µξin
(uink)}.

Step 3. Return L via the following estimation formula

L =
1
2

(
max

1≤k≤N

{
νk

∣∣ g(y − unk) ≤ 0
}

+ min
1≤k≤N

{
1− νk

∣∣ g(y − unk) > 0
})

where unk = (u1nk, u2nk, · · · , umnk).

Fuzzy Simulation for Expected Value:

Step 1. Set e = 0.

Step 2. Randomly generate uink from the ε-level set of ξin, i = 1, 2, · · · ,m, respectively, where k = 1, 2, · · · ,M
and ε is a sufficiently small positive number.

Step 3. Set νk = mini {µξin
(uink)}.

Step 4. Randomly generate b from [b1, b2].

Step 5. If b ≥ 0, then e ← e + Cr {g(y − ξn) ≤ b}.

Step 6. If b < 0, then e ← e− Cr {g(y − ξn) ≥ b}.

Step 7. Repeat the fourth to sixth steps for N times.

Step 8. Return E [g(y − ξn)] = b1 ∨ 0 + b2 ∧ 0 + e · (b2 − b1)/N .

4.2 Approximating Fn(y) by Neural Networks

Neural network is well-known as a universal approximator whose input-output mapping is matched to an un-
known nonlinear mapping. In literature [15], Leshno et al. gave a result that multi-layer feedforward network
with a non-polynomial activation can approximate any nonlinear continuous function arbitrarily well over a
closed bounded set. So do the optimal cost function provided that it is continuous over a closed bounded set.
Inspired by this, we first use fuzzy simulation to generate samples and then use the backpropagation algorithm to
train neural networks for approximating functions Fn(y).

A feedforward neural networks is essentially a nonlinear mapping from the input space to the output space.
Assume that the mapping is characterized by U(y,w) where w denotes the network weights. A training process
on a set of input-output data

{
(y(k), z(k))

∣∣ k = 1, 2, · · · ,M
}

is to find the best weight vector that minimizes the
following error function

Sum Squared Err(w) =
1
2

M∑

k=1

|U(y(k),w)− z(k)|2. (9)
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In this paper, the popular backpropagation algorithm is employed as the learning algorithm, and the average error

Average Err(w) =
1
M

M∑

k=1

|U(y(k),w)− z(k)|. (10)

is also used to demonstrate the accuracy of the trained neural networks. For detailed discussion on uncertain
function approximation, the reader may consult Chapter 3 in the book [21] by Liu.

4.3 Compute fn(x) for Given x by Genetic Algorithm

For each given state x, in order compute the optimal cost with respect to it, we must solve the following opti-
mization problem

fn(x) = min
y≥x

Fn(y)− cn · x,x ∈ Πn,y ∈ Ξn.

Now, we give a genetic algorithm procedure for solving the above optimization problem.

Genetic Algorithm Procedure for Optimal Cost:

Step 1. Initialize pop size chromosomes randomly.

Step 2. Update the chromosomes by crossover and mutation operations.

Step 3. Calculate the objective values for all chromosomes.

Step 4. Compute the fitness of each chromosome according to the objective values.

Step 5. Select the chromosomes by spinning the roulette wheel.

Step 6. Repeat the second to fifth steps for a given number of cycles.

Step 7. Report the best chromosome as the optimal cost for the given state x.

We note that, in the genetic algorithm procedure, the trained network representing F (y) substitutes the work
of simulation. Thus much reduce the computation cost in the computing procedure.

4.4 Approximating fn(x) by Neural Networks

In general, the function fn(x) is very complex, and it is impossible for us to get the analytical properties of
it. However, we can employ neural network to approximate the continuous function over a bounded hypercube.
Firstly, we generate a set of samples by employing the genetic algorithm procedure. And then, we can also train
a feed-forward neural network on the set of samples to approximate the function fn(x). The procedure is also
omitted here.

4.5 Hybrid Intelligent Algorithm

In order to solve the Bellman’s equation (7), the recurrence relation should be performed N times. We only take
stage n as an example to illustrate how we get the neural networks that match to functions Fn(y) and fn(x).

Firstly, generate a set of points uniformly from the hypercube Πn, then for each y in the set, calculate Fn(y)
by stochastic simulation (here a neural network trained to match to the optimal function fn+1(x) is used, i.e., we
get the sample set of the function Fn(y). Secondly, use these samples as training data to train a neural network to
approximate the complex function Fn(y). Thirdly, generate a set of points uniformly from the hypercube Ξn, then
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for each x in the set, we embed the trained neural network into genetic algorithm to get the minimum discounted
expected value fn(x) of all the cost incurred over the horizon. i.e., we get the sample set of the function fn(x).
lastly, we use these samples as training data to train a neural network to approximate the complex optimal function
fn(x).

The procedure of hybrid intelligent algorithm may be written as follows:

Hybrid intelligent algorithm:

Step 1. Initialize a neural network represent fN+1(x) = 0.

step 2. Set n ← N .

Step 3. Generate a set of points uniformly from the hypercube Πn, then for each y in the set, use stochastic
simulations to calculate the value of Fn(y).

Step 4. Train a neural network to approximate the uncertain function Fn(y) according to the generated training
data.

Step 5. Generate a set of points uniformly from the hypercube Ξn, then embed the trained neural network to
genetic algorithm to get the value of fn(x) for each x in the set.

Step 6. Train neural networks to approximate the optimal cost function fn(y) according to the generated training
data.

Step 7. Report the neural network that matches to the optimal function fn(x).

Step 8. Set n ← (n− 1), repeat the third to seventh steps until n = 0.

5 A Numerical Example

The computer code for the HIA has been written in C language. In order to illustrate its effectiveness, we provide
one numerical example performed on a personal computer.
Example. Consider a dynamic inventory system with 6 commodities, and the problem horizon 4 stages. The
ordering cost function at all stage is the same and given as follows

c(d) =
m∑

i=1

sidi,

where s1i is randomly generated from interval [4, 6] and given in Table 1. The inventory cost function at all stage
is the same and given as follows

l(x) =
m∑

i=1

li(xi)

where

li(xi) =
{

hi
√

xi, xi ≥ 0
pix

2
i , xi < 0

where hi and pi are randomly generated from interval [3, 7] and [6, 10], respectively and given in Table 1. The
fuzzy demands at all stages are given in Table 2.

After a run of the hybrid intelligent algorithm, we get the optimal cost function fn(x), n = 1, 2, 3, 4 repre-
sented by neural networks.
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Table 1: parameters si, hi and pi

i = 1 i = 2 i = 3 i = 4 i = 5
si 4.0025 5.1271 4.3866 5.6174 5.1700
hi 4.4011 6.5838 6.2913 5.9864 3.6964
pi 8.8420 8.0541 7.2159 6.0599 6.3656

Table 2: fuzzy demands ξin

n = 1 n = 2 n = 3 n = 4
i = 1 (1.473, 11.658, 29.885) (3.521, 10.570, 26.076) (8.622, 12.096, 27.796) (0.562, 10.087, 29.187)
i = 2 (4.456, 11.190, 20.046) (7.833, 18.026, 25.198) (8.436, 19.967, 29.996) (2.758, 12.728, 25.879)
i = 3 (0.089, 13.778, 25.316) (3.019, 18.759, 27.266) (6.114, 13.924, 22.662) (6.911, 18.376, 27.264)
i = 4 (5.711, 16.017, 26.071) (9.559, 19.257, 25.393) (2.972, 18.401, 20.237) (4.849, 12.053, 27.437)
i = 5 (1.662, 16.630, 24.507) (1.423, 14.620, 22.353) (3.758, 10.926, 26.772) (4.684, 14.579, 29.491)

6 Conclusion

This paper contributes to the area of inventory by presenting a new fuzzy dynamic programming model, and a
hybrid intelligent algorithm which may bypass the curse of dimensionality .
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[4] Campos, L., and González, A., A subjective approach for ranking fuzzy numbers, Fuzzy Sets and Systems,
Vol. 29, 145-153, 1989.

[5] Chen S.H., Wang C.V. and Ramer A., Backorder fuzzy inventory model under function principle, Informa-
tion Science, Vol. 95, pp.71–79, 1996.

[6] Crites R.H. and Barto A.G., Improving elevator performance using reinforcement learning, Advances in
Neural Information Processing Systems 8, Touretzky D.S., Mozer M.E. and Hasselmo M.E., eds., MIT
Press, Cambridge, MA, 1993.

[7] Dubois, D., and Prade, H., The mean value of a fuzzy number, Fuzzy Sets and Systems, Vol. 24, 279-300,
1987.

[8] Dubois, D., and Prade, H., Possibility Theory: An Approach to Computerized Processing of Uncertainty,
Plenum, New York, 1988.

JIC email for subscription: info@jic.org.uk



Journal of Information and Computing Science, 1(2006) 4, pp.235-244 243

[9] Dubois, D., and Prade, H., Fuzzy numbers: An overview, in Analysis of Fuzzy Information, Vol. 2, 3-39,
Bezdek, J.C. (Ed.), CRC Press, Boca Raton, 1988.

[10] Gao J. and Liu B., New Primitive Chance Measures of Fuzzy Random Event, International Journal of Fuzzy
Systems, Vol.3, No.4, 527-531, 2001.
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