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Abstract. In some instances of production supply chain problems, triangular inequality constraint does not 
hold for the cost functions. This study aims at solving a special case of these problems, where the triangular 
inequality constraint still remains valid for the delivery cost within districts. After transforming the particular 
problem to the second kind of Generalized Travelling Salesman Problem (GTSP), an innovative genetic 
algorithm using generalized chromosomes with void vertices is employed to solve the special GTSP problem. 
Case study of simulation for benchmark test problems shows that the proposed algorithm is considerably 
successful. 
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1. Introduction 
The strategic logistic planning is becoming more and more important in the global manufacturing 

environment. With advanced logistic system, manufacturers can eliminate waste from manufacturing 
processes, identify and correct weak links in the supply chain, reduce manufacturing lead times and 
inventories, allow for more flexibility in all operations and manage financial data more effectively. Currently, 
three types of flows are considered in a Supply Chain: Material flows [1], Financial flows [2] and 
Information flows [3]. In this paper, only the material flows are considered (refer to Figure 1). 

 
Fig 1. Material flows. 

With the increasing complexity of a supply chain, the importance of delivery system between 
manufacturers and the end customers grows, especially for the manufacturers which provide quantitatively 
much consumed products such as drinks and foods. To control the market, direct distribution has been the 
primary type for the product distribution of these firms. For example, Coca Cola Company has made a 
golden key partner (GKP) strategy [4] to control the drink market. Firstly, the Coca-Cola Company selects 
one comparatively large-scale dealer for each involved district as the GKP. Secondly, the products are 
delivered to GKPs directly. Finally, the GKP takes charge of the distribution tasks to the rest retailers in its 
district. The costs of the logistics are all paid by Coca Cola Company. Compared with the products’ value, 
the delivery cost is much magnitude in this case. As a result, how to minimize the delivery cost of products is 
the chief target in the production-distribution supply chain management. 

This sort of supply chain problems could be generally treated as Generalized Travelling Salesman 
Problem (GTSP). To solve GTSP, most of the existing researches were focused on the case in which the 
triangular inequality holds for the cost functions. An innovative distribution model, where the triangular 
inequality constraint does not hold for the cost functions between manufacturer and the GKPs but still 
remains valid for that of the internal delivery, is proposed in this paper to optimize the routing of supply 
chain. A novel genetic algorithm using generalized chromosomes with void vertices, is employed to obtain 
the solution of this model. In the following, we will firstly present the mathematical model for this problem. 

Wholesaler Manufacturer End-customer Retailer
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Following the detailed design for the novel genetic algorithm, some computational results of case study are 
given to validate the proposed algorithm. Finally, we make a conclusion on this study as well as suggestions 
on future work.    

2. Mathematical model 
Specifically, the following problem in a production-distribution supply chain is considered: A manufacturer is to 
distribute its products to n districts from its warehouse or factory. The manufacturer try to minimize the delivery costs 
by optimizing the transport routing, which must pass through all of the predefined districts to visit at least one 
wholesaler in each district. Thus, in addition to determining the order in which the districts should be visited, the 
manufacturer should choose one wholesaler or wholesalers to be visited as distribution centres for each district. 
Generally, since the delivery cost between districts is much greater than the internal one in each district, the routing 
passing through each the districts is the main consideration in reality. The problem can be treated as GTSP [5-7]. 
The GTSP represents a kind of combinatorial optimization problem, which has been introduced by Henry-Labordere [5], 
Saksena [6], and Srivastava [7] in the context of computer record balancing and of visit sequencing through welfare 
agencies since 1960s. In the GTSP problem, n cities grouped into p districts are given. A traveling salesman has to find 
the shortest tour that visits at least one city in each district .The GTSP can be described as the problem of seeking a 
special Hamiltonian cycle with lowest cost in a complete weighted graph. Let G= (V, E, W) be a complete weighted 
graph where 1 2V={  ,  , . . . , }, E={(  , )  , V},and W { (  , ) (  , ) 0, (  , ) 0 }n i j i j i j i j i iv v v v v v v = w v v w v v   w v v = ,  i , j n  ∈ ≥ ≤  are 

vertex set, edge set, and cost set, respectively. The vertex set V is partitioned into p possibly intersecting groups 

1 2V  ,V  , . . . ,V p  and =1V= V  p
j j∪ . The special Hamiltonian cycles required to pass through all of the groups, but 

not all of the vertices differing from that of TSP (Travelling Salesman Problem).  
Parameters  
1. 0v  denotes the warehouse or factory.  

2. iv (1 )i n≤ ≤  denotes the wholesaler i and n is the amount of wholesalers. 

3. , ...,1 ,|V |V { }
jj j ju u= ( )j p≤  denotes the district j and ,j ku ( |V |)jk ≤  denotes the kth wholesaler in 

district j. p is the amount of predefined districts.  
4. 0 0 0,1V { } { }v u= =  

5. , ,, , , ,( ) ( )j k j m j k j mw u u f u u=  denotes the delivery cost between ,j ku and ,j mu ,which represent two 
different wholesalers in district j. 

6. , ,, , , ,( ) ( )i k j m i k j mw u u F u u=  denotes the delivery cost between ,i ku  and ,j mu . Specifically, ,i ku  denotes 

the kth wholesaler in district i and ,j mu  denotes the mth wholesaler in district j. 

Decision Variables  
1, if the arc between vertex  and  is on the available route

( , )
0,   else

i j
i j

v v
x v v =





  

1, if the route enters vertex   
( )

0,  else
i

i

v
y v =





 

1, if the route leaves vertex   
( )

0,  else
i

i

v
y v′ =





 

Several assumptions are presented for this model: 1.The cost function f only depends on the length of the 
routes, and f is much less than F. 2. As a transport cycle, both the origin and destination of the route should 
be 0v . 3. Each district is visited at least once. 

 Using the above notations, the problem is mathematically formulated as follows: 
|V | |V ||V |

, , , ,, , , , , , , ,
1 1 1

min[ ( ) ( ) ( ) ( )]
j ji p p

i k j m i k j m j k j m j k j m
k m i j m k j

F u u x u u f u u x u u
= = ≠ ≠ =

+∑∑∑ ∑∑                        (1) 

s.t. 
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( )( )  i iy v y v i n′ = ∀ ≤                                                             (4) 
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i k j m
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i j
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= = =

≠
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|V ||V |

,, ,
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( ) 1  
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i k j m
k m i

i j

x u u j p
= = =

≠

= ∀ ≤∑∑∑                                                     (6)  

|V | |V |

, ,
1 1

( ) ( ) 1  
i i

i k i k
k k

y u y u i p
= =

′ = ≥ ∀ ≤∑ ∑                                                   (7) 

,

( , ) | | 1 and  for at least one but not all 
i j

i j k
v v S
i j

x v v S S V S V k p
∈

≠

≤ − ⊆ ∩ = ∅ ≤∑               (8) 

( , ), ( ), ( ) {0,1}  ,i j i ix v v y v y v i j n i j′ ∈ ∀ ≤ ≠                                          (9) 

In this formulation, constraints (2) and (3) indicate ( , )i jx v v is in terms of the inward flow ( )jy v  and of 

the outward flow ( )iy v′ ; Constraint (4) corresponds to flow conservation equations at the vertices; 
Constraints (5) (6) (7) ensure that each district is visited at least once. Constraint (8) prohibits the formation 
of subcycles including vertices from some, but not all districts. Finally, constraint (9) is upper bound and 
integrality conditions on the variables.  

There are two kinds of GTSP corresponding to the different restraint conditions, which the cost functions 
satisfy. At present, the most studied case of GTSP is the one where the cost functions satisfy the triangle 
inequality[8-12], which is called the first kind of GTSP (refer to Figure2). Obviously in this case, the optimal 
route will visit only one vertex in each district. However, in some instances of reality, the triangular 
inequality may not hold for the cost function, which is called as the second kind of GTSP (refer to Figure 3). 
Due to the complexity, few relevant studies have been working on it. In the following section, we will 
propose a novel genetic algorithm to solve a special case of the second kind of GTSP, where triangular 
inequality constraint still remains valid for cost function of the internal delivery within any district.  
 

                    
Fig 2. The first kind of GTSP   Fig 3. The second kind of GTSP 

Before the particular algorithm is introduced, a relevant theorem with proof is presented firstly.  
Theorem 1. The optimal route will visit at most two vertices in each district, if cost functions satisfy the 
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triangle inequality in each district: 
( , ) ( , ) ( , )for , , | V |,a b b c a c a b c kw v v w v v w v v v v v k p+ ≥ ∀ ∈ ≤  

Proof: We suppose that the optimal route visit three vertices , ,a b cv v v  orderly in a district Vi . Then, 
( , ) ( , ) ( , )a b b c a cw v v w v v w v v+ ≥ because cost functions satisfy the triangle inequality in the district i. Hence, 

the route {... , ...}a cv v  is more optimal. The optimal route will visit at most two vertices in each district. 

As the proposed model in this paper satisfies theorem 1, constraints (7) in the model can be replaced 
by  (7 ) ′ : 

|V | |V |

, ,
1 1

2 ( ) ( ) 1, for 
i i

i k i k
k k

y u y u i p
= =

′≥ = ≥ ∀ ≤∑ ∑                                            (7 ) ′  

Consequently, constraints (5) (6) and (7’) ensure that each district is visited at least once, and at most 
two vertices are visited in each district. 

3. Design of the algorithm 

3.1 algorithms for GTSP 
In the previous, simple dynamic programming methods were proposed [5-7] to solve the first kind of 

GTSP. Laporte [8, 9] used integer programming to solve the instances with 104 vertices. Fischetti et al. [10, 
11] applied branch-and-cut algorithm to solve the GTSP with 442 vertices. Renaud and Boctor [12] designed 
a composite heuristic algorithm for GTSP. And some studies on GTSP focused on how to change GTSP into 
TSP [13, 14]. 

Genetic algorithm (GA) is one of the most important heuristic algorithms for NP-hard combinatorial 
optimization problems. Recently, a generalized chromosome genetic algorithm (GCGA), which could be 
considered as the best available solution for the first kind of GTSP, was proposed by Wu et al. [15]. This 
paper designs a novel chromosome adopting void vertices under the framework of GCGA [15], and then 
proposes the generalized-chromosome-based genetic algorithm to solve the aforementioned model, i.e., a 
second kind of GTSP problem.  

3.2 Void vertex Genetic Algorithm 
There are two parts in the designed chromosome (refer to Figure 4): head part and body part, which is 

the same as generalized chromosome of GCGA. The void vertex, which is inserted into the body part, can be 
replaced by an arbitrary vertex in the district which has been indexed by the left side coding of body part. 

 
Fig 4. Generalized chromosomes with void vertices 

To reserve the updated information of void vertices, info-set A and edge-substitution function S are 
innovatively defined in this study as follows. 

Definition 1.  
A { (  , )= or |  , , and , , }i j k i k g j h= a v v v v v V v V  g h g h p  ∅ ∈ ∈ ≠ ≤  

Definition 2.  

( , ) ( , )
( , ) ( , )

(  , )=
(  , )=

i k k j i j k
i j

i j i j

v v v v a v v vS v v v v a v v
+

=

 ∅

i f
     i f  

In the decoding process, the body part defines a GTSP cycle and the head part is used to determine the 
visited vertices in each district. Edge-substitution function works on every feasible gene segments lying in 
the body part, while the corresponding information of void vertices are updated and reserved in info-set. 
Figure5 shows a GTSP problem, Figure6 shows a generalized chromosome with void vertices and its decoding process. 
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It is assumed that: 4 12 12 6 2 6 8 8 4(  , )= , (  , )= , (  , )= , (  , )=a v v a v v v a v v a v v∅ ∅ ∅ . 

 
Fig 5.A GTSP problem 

 
Fig 6. Decoding process 

Except for the decoding process, the workflow of the GCGA [15] is adopted for the void vertex genetic 
algorithm. 

4. Computational Results 
Using the procedure introduced by Fischetti et al. [16], TSP instances from TSPLIB [17] can be 

converted to GTSP instances. In this paper, we modify the above partition algorithm so that it can be used to 
generate test data for the void vertex genetic algorithm.  
Firstly, the vertex clustering has been done to simulate geographical regions:   

The number of districts is / 5p n=    . Let the distance, i.e. delivery cost, from a vertex iv  to a set S of 

vertices be the minimum of ( , ); S iw v u u ∈ . Then p centres of districts are chosen according to the following 
procedure. The first centre 1c  is the vertex furthest to the vertex 0v . The kth centre kc  is the vertex furthest to 
the set 1 2 1{ , ... }kc c c − .A vertex iv belongs to the cluster with the centre jc closest to iv  . If there are several 

centres equidistant from iv , the centre jc  of the smallest index is chosen. 

Secondly, notice that the vertex set in TSPLIB is a point set with two-dimension coordinate, the cost 
functions are modified as follows:  

2 2
, ) ) ,

2 2
, ) ) ,

( ) ( ( , for | V |,

( ) ( ( , for 1, | V |, | V |, ,

i j i j i j i j k

i j i j i j i k j m

f v v x x y y v v k p

F v v x x y y v v k m p k mα α

− −

− −

= + ∈ ≤

= + > ∈ ∈ ≤ ≠
 

Here we setα a preset constant ‘‘10’’ in this paper.Table 1 presents the results of three partitioned 
problems of TSPLIB using the void vertex genetic algorithm. The instances are all calculated on a PC with 
1.5 GHz processor and 256 M memory. The population size is 100, maximal generation is 200, crossover 
probability is 0.5 and mutation probability is 0.09 in our GA Algorithm. 

Table 1. Results for test problems of TSPLIB 

Problem 
 p districts n  

vertices Three runs Opt The number of vertices 
that optimal route passed 

Time 
(s) 

1 507.5 45 4.2 krob150 30 150 

2 492.6 50 4.8 
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   3 507.9 47 1.4 

1 202.0 26 1.4 

2 199.0 30 2.0 rat99 20 99 

3 211.4 32 2.0 

1 89.8 17 0.5 

2 90.6 16 0.3 eil51 11 51 

3 89.8 17 0.3 

Figure 7 shows a solution for the problem eil51 of TSPLIB. To simulate geographical regions, the vertices have been 
partitioned to 11 districts. The optimal route visits 17 vertices and each district is visited at least once. 

 
Fig 7. Solution for the Problem eil51 

5. Conclusions 
In some product distribution problems, delivery cost between districts is much greater than the internal 

one within each district, which means the triangular inequality constraint for the cost function is broken. This 
study aims at solving a special case of these problems, where the triangular inequality constraint still remains 
valid for the delivery cost within districts. After formulating this novel problem mathematically, we 
transform it into the second GTSP model. Under the framework of GCGA [15], an innovative generalized 
chromosome-based generic algorithm is employed to solve this special GTSP with the adoption of 
chromosome with void vertices. Case study of simulation for benchmark test problems shows that the 
proposed algorithm is considerably successful. Rather than specifically dealing with the delivery routing 
optimization between manufacturer and the GKPs in districts, this study could be extended, in the future 
work, to taking into account the strategy of whole product delivery system involving the within-district 
delivery as well as the between-district delivery.  

6. Acknowledgments 
This work has been supported by the National Natural Science Foundation of China (10471045), the 

program for New Century Excellent Talents in University(NCET), Natural Science Foundation of 
Guangdong Province (031360, 04020079), Excellent Young Teachers Program of Ministry of Education of 
China(2009), Fok Ying Tong Education Foundation (91005), Social Science Research Foundation of MOE 
(2005-241), Key Technology Research and Development Program of Guangdong Province (2005B10101010, 
2005B70101118), Key Technology Research and Development Program of Tianhe District (051G041) and 
Natural Science Foundation of South China University of Technology (D76010). 

7. References 
[1] Paul Childerhouse, Denis R. Towill, 2003, Simplified Material Flow Holds the Key to Supply Chain Integration, 

The International Journal of Management Science, Volume: 31, Issue: 1, February 17-27. 
[2] M. Badell, J. Romero, L. Puigjaner, 2005, Optimal Budget and Cash Flows During Retrofitting Periods in Batch 



Journal of Information and Computing Science, Vol. 1 (2006) No. 5, pp 259-265 
 
 
 

JIC email for subscription: info@jic.org.uk 

265

Chemical Process Industries, International Journal of Production Economics, Volume: 95, Issue: 3, March 18, 
359-372. 

[3] P. Fiala, 2005, Information Sharing in Supply Chains, The International Journal of Management Science, Volume: 
33, Issue: 5, October, 419-423. 

[4] Dou, Y., 2005. A New Logistic Method of Coca Cola. (in Chinese) 
http://www.tobaccochina.com/tech/data/20054/y401103302.htm 

[5] A.L. Henry-Labordere, 1969, The Record Balancing Problem: A Dynamic Programming Solution of a 
Generalized Traveling Salesman Problem. RAIRO B2, 43-49. 

[6] J. P. Saksena, 1970, Mathematical Model of Scheduling Clients Through Welfare Agencies. CORS Journal 8, 185-
200. 

[7] S. S. Srivastava, S. Kumar, R. . Garg, P. Sen, 1969, Generalized Traveling SalesmanPproblem Through n Sets of 
Nodes. CORS Journal 7, 97-101. 

[8] G. Laporte, H. Mercure, Y. Nobert, 1987, Generalized Traveling Salesman Problem Through n Sets of Nodes: the 
asymmetrical cases, Discrete Appl. Math 18, 185–197. 

[9] G. Laporte, Y. Nobert, 1983, Generalized Traveling Salesman Through n Sets of Nodes: an Integer Programming 
Approach, INFOR, 2161–75. 

[10] Fischetti, M., Salazar, J.J., Toth, P., 1993, A Branch-and-cut Algorithm for the Symmetric Generalized Traveling 
Salesman Problem, Working paper, University of Bologna. 

[11] Fischetti, M., Salazar, J. J., Toth, P., 1995, The Symmetric Generalized Traveling Salesman Polytope, Networks. 
26, 113–123 

[12] Renaud, J., Boctor, F.F., 1998, An Efficient Composite Heuristic for the Symmetric Generalized Traveling 
Salesman Problem, European Journal of Operational Research. 108, 571-584 

[13] Y. Lien, E. Ma, B.W.S. Wah, 1993, Transformation of the Generalized Traveling Salesman Problem into the 
Standard Traveling Salesman Problem, Information Sci. 74, 177–189. 

[14] V. Dimitrijevic, Z. Saric, 1997, An Efficient Transformation of the Generalized Traveling Salesman Problem into 
the Traveling Salesman Problem on Digraphs, Inf. Sci. 102 105–110. 

[15] W. Chunguo, L. Yanchun, L.H. Pueh, L. Chun, 2004, Generalized Chromosome Genetic Algorithm for 
Generalized Traveling Salesman Problems and its Applications for Machining, Physical Review E 70, 1. 

[16] M. Fischetti, J.J. Salazar, P. Toth, 1997, A Branch-and-cut Algorithm for the Symmetric Generalized Yraveling 
Salesman Problem, Oper. Res. 45, 378–394 

[17] G. Reinelt, 1991, TSPLIB—A Traveling Salesman Problem Library, ORSA J. Comput, 3, 376–384 
 


