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Abstract. In the present paper, we propose new smoothing procedures for iterative block methods for 
solving nonsymmetric linear systems of equations with multiple right-hand sides. These procedures 
generalize those known for solving linear systems with one right-hand. We first give some properties of these 
new algorithms. Then new methods such as the global minimal residual smoothing (GMRS) algorithm and 
the smoothed global biconjugate gradient (SGL-BCG) algorithm are introduced. Finally, numerical examples 
are given. 
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1. Introduction 
Many applications such as in numerical simulation of wave propagation require the solution of several 

sparse systems of linear equations with the same coefficient matrix and different right-hand sides. 
AX B=                                                                         (1.1) 

where A is an N×N real nonsymmetric and nonsingular matrix 1[ , , ]sB b b= "  and 1[ , , ]sX x x= "  
are N×s rectangular matrices with . s N<<

In the last years, generalizations of the classical Krylov subspace methods have been developed. The first 
class of these methods contains the block solvers, such as the block biconjugate gradient (BL-BCG) 
algorithm [6], the block generalized minimal residual (BL-GMRES) algorithm introduced in [9] and studied 
in [8] , and the block quasi minimal residual (BL-QMR) algorithm[2]. They are generally more efficient as 
compared to their single right-hand counter parts when the matrix of the linear systems is relatively dense . 

Another class of solvers that can handle (1.1) is the seed methods. It consists in selecting a seed system 
and generating by some method the corresponding Krylov subspace. This procedure is repeated with another 
seed system until all the systems are solved. This technique is especially attractive when the right-hand sides 
of (1.1) are not available at the same time; see [7]. 

Recently, global methods were proposed. These methods were based on the use of a global projection 
process onto a matrix Krylov subspace. The global full orthogonalization method (GL-FOM) [4], the global 
generalized minimal residual (GL-GMRES) [4], the global biconjugate gradient (GL-BCG) and the global 
biconjugate gradient stabilized (GL-BICGSTAB) [5] methods are the most efficient matrix Krylov subspace 
methods that can solve problem (1.1) . 

The BL-BCG algorithm uses a short three-term recurrence formula, but in many situations the algorithm 
exhibits a very irregular convergence behavior. This problem can be overcome by using a block smoothing 
technique as defined in [3] or a BL-QMR procedure [2]. 

In the present paper, we will define new smoothing iterative block methods which improve irregular 
convergence behavior of the GL-BCG algorithm. The idea of our analysis is originated from [3]. 

The remainder of the paper is organized as follows. In section 2,we give a brief description of GL-BCG 
algorithm .The new block generalization of the hybrid procedure is introduced and some properties are given 
in section 3. In section 4, we propose a global minimal residual smoothing (GMRS) procedure and give some 
theoretical results. The new smoothed global biconjugate gradient (SGL-BCG) algorithm is presented. 
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Section 5 is devoted to some numerical experiments. 

Throughout this paper, we use the following notations. For two matrices X and Y in N sR × ,we define the 
following inner product (, T

F )X Y tr X Y= ,where tr(Z) denotes the trace of the square matrix Z 

and the transpose of the matrix X.The associated norm is the Forbenius norm which we denote by TX .
F

. 

2
.,.  will denote the Euclidean inner product and 

2
.  the associated norm. For a matrix N sV R ×∈ , the 

matrix krylov subspace is the subspace of ( , )k A Vκ N sR ×  generated by the matrices V, AV, .A 

systems of matrices of 

1, kA V−"
N sR ×  is said to F-orthogonal if it is orthogonal with respect to the inner product 

.,.
F

. 

2. A brief description of GL-BCG algorithm 
The GL-BCG algorithm can be derived from the global lanczos algorithm (GL-LANCZOS), see [5] .At 

step k, the residual kR  generated by this algorithm is such that 0kR R−  lies in the right matrix krylov 
subspace  

2
0 0( , ) { , , , }k

k 0A AR span AR A R A Rκ = "  
and kR  is F-orthogonal to the left matrix krylov subspace  

1

0 0 0( , ) { , , , }
kT T

k 0
TA R span R A R A Rκ −

=� � � … �  

where 0R�  is a given N×s matrix . 

The algorithm is defined as follows: 
Algorithm 2.1. The global biconjugate gradient (GL-BCG) algorithm 

compute 0 0R B AX= −  for a given 0X ,and choose 0R�  such that 0 0, 0
F

R R ≠� ,set 0P R0=  and 

0 P 0R=� � , for j=0,1,…，compute  

a. 1j j jX X jPα+ = + , where j , ,j j j jF F
R R AP Pα = � � , 

b. 1j j j jR R APα+ = − , 

c. 1
T

j j j jR R Aα+ = −� � P� , 

 d. 1 1j j jP R jPβ+ += +  ,where 1 1, ,j j j j jF F
R R R Rβ + += � � , 

e  1 1j j jP R jPβ+ += +� � � . 

Proposition 2.1[5]. The matrices produced by the GL-BCG algorithm satisfy the following relation: 

(1)  , 0k l F
R R =� and , 0;k l F

AP P k l= ≠� . 

(2)  . 0 0{ , , } { , , }k
kspan P P span R A R=" " 0

0

0

(3)  . 0 0{ , , } { , , }
kT

kspan P P span R A R=� � � �… …

(4)  0 ( , )k kR R Aκ− ∈ R  and kR  is orthogonal to 0( , )T
k A Rκ � . 

3. New generalized smoothing procedure 
Consider problem (1.1) and assume that two global iterative methods such as the GL- FOM and the GL-

BCG algorithm generate, respectively, at step k, the iterates  and with the corresponding residuals ,1kX ,2kX

,1kR  and ,2kR . Similar to linear systems with one right-hand side [1], we define the new approximation of 
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(1.1) as follows:               

,1 ,2(1 )k k kY tX t X= + −                                                             (3.1) 
and the corresponding residual  

,1 ,2(1 )k k kS tR t R= + − . 

The scalar t is chosen such that  

,1 ,2 ,k k k F
R R S 0− = .                                                          (3.2) 

Setting , the scalar t satisfying (3.2) is given as  ,1 ,2k k kE R R= −

                   ,2, ,k k k k k FF
t t E R E E= = − .                                                  (3.3) 

Hence  

,2k k kS R t Ek= + . 

We assume that the matrix is of full rank. Since kE ,2k k kS R t Ek= + , then we have  

   
2 ,k k kF F

S S S=  

     =
2 22

,2 ,22 ,k k k k k FF F kR t R E t E+ + . 

From (3.3) we can get 
222 2

k ,2 ,2S ,k k kF FF F
kR R E E= − . 

Thus ,2k kF F
S R≤ .  Similarly, we have ,1k kF F

S R≤ . 

Therefore 

,1 ,2min( , )k kF F
S R R≤ k F

.                                                      (3.4) 

We have the following result. 
Proposition 3.1 The residuals defined by the generalized smoothing procedure satisfy the following 

relations 

(1) ,1, ,k k k kF F
S S S R=  and ,2, ,k k k kF F

S S S R= ; 

(2) The scalar  given by (3.3) solves the minimization problem  kt

,2mink kF Ft R
S R t

∈
= + kE . 

Proof: see [3]. 
In the following, we will consider a special case of the generalized global smoothing procedure. Instead 

of combining two different global methods, we consider only one method. At step k, we combine the current 
approximation kX  with the approximation 1kY −  of the generalized smoothing procedure. 

4. Smoothed iterative global methods 

4.1. A global minimal residual smoothing algorithm 
The norm of the residual produced by some block iterative methods such as the GL-BCG algorithm may 

heavily oscillate. So it would be interesting to apply the global smoothing procedure to such methods to get a 
norm non-increasing of the new residual. 

Let us consider now the following particular case of the generalized global minimal residual smoothing 
procedure. Suppose that , which will be denoted ,1kX kX , is the k-th iterate computed by some iterative 

global method and take  in expression (3.1). Then we obtain the global minimal residual 
smoothing (GMRS) procedure as follows: 

,2 1k kX Y −=
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Algorithm 4.1. Global minimal residual smoothing (GMRS) algorithm 
Let , compute 0 0 0,Y X S R= = 0

1 1( )k k k k kY Y t X Y− −= + − , 

1 1( )k k k k kS S t R S− −= + − , 

Where 
2

1,k k k kF F
t E S E−= − , 1k k kE R S −= −  is assumed to be of full rank. 

Owing to the minimization property (3.4), the norm of residual  decreases at each iteration kS

k F
S ≤ 1min( , )k kF F

R S − . 

Note that for linear systems with one right-hand, the GMRS procedure reduces to the well-known minimal 
residual smoothing procedure (MRS); see[10]. 

For the GMRS procedure, we have the following properties. 
Proposition 4.1. Let kR be the residuals generated by some iterative global methods and  be the 

sequence of the residuals produced by the GMRS procedure, then  
kS

(1) 1, ,k k k kF F
S R S S −= ; 

(2) 1, ,k k k kF F
S S S S −= ; 

(3) , ,k k k kF F
S S S R= ;  

(4) 1, (1 ) , ,k k k k k k k kF F F

2
1,k k k kF F

S E−= −t E . S S t S S t S R−= − + ; Where 

Proof: (1) - (4) may be derived from the results of Proposition 3.1. 
Proposition 4.2. Let kR be the residuals generated by some global iterative methods for solving (1.1) 

and  be the residual defined by the GMRS procedure. Then  kS

(i) 
2

2 2 1
1 2

,k k F
k kF F

k F

E S
S S

E
−

−= − ; 

(ii) 
2

2 2
2

,k k F
k kF F

k F

E R
S R

E
= − . 

Proof: omitted. 
When the matrix A  is large and sparse, the most important class of iterative global methods for solving 

linear systems with multiple right-hand sides are matrix Krylov subspace methods. So when applying the 
GMRS procedure to such methods，it is interesting to know if the obtained methods are also matrix Krylov 
subspace methods. 

If the residuals kR are generated by a matrix krylov subspace method, then kR can be expressed 

as  

0 ,
1

k
i

k i k
i

0R R α
=

= +∑ A R ,where ,i k Rα ∈ , i=1,… ,k. 

Let kϕ  be the scalar polynomial defined by  

,
0

( )
k

i
k i

i
t tkαϕ

=

=∑  and (0) 1kϕ = . 

Then the residual kR can be expressed as 

0 ,
0

( )
kdef

i
k k i k

i
0R A R A Rαϕ

=

= ≡ ∑ . 
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This is equivalent to the fact that 0 0( , )k kR R A ARκ− ∈ , where 0( , )k A ARκ  is the matrix Krylov subspace 

generated by the matrices 0 0, , kAR A" R . 
When applying the GMRS procedure to matrix Krylov subspace methods we have the following result. 
Proposition 4.3. If the approximations kX  are generated by a matrix Krylov subspace method, then 

the corresponding iterates  produced by the GMRS procedure are also generated by a matrix Krylov 
subspace method . The residuals  are expressed as  

kY

kS

0 , 0 ,
1

,
k

i
k i k i

i
S S A R Rβ β

=

= + ∈∑ k

0S−

kR

. 

Proof: We prove the property by induction on the index k.The property is true for k=0.Assume that  
1

1 0 , 1
1

k
i

k i k
i

S S Aβ
−

−
=

= +∑                                                            (4.1)  

The kth residual  of the GMRS procedure can be written as   kS

1(1 )k k k kS t S t−= − + . 

Hence ,using (4.1) and the last expression of ,we get  kS
1

0 , 1 0 0 ,
1 1

(1 )( ) ( )
k k

i i
k k i k k i k

i i

S t S A S t R Aβ α
−

−
= =

= − + + +∑ ∑ 0R

0

, 0k k

(1 )i k k i k k i kt t

. 

Since  ,it follows that  0S R=
1

0 , 1 , 0
1
[(1 ) ]

k
i k

k k i k k i k k
i

S S t t A S t A Sβ α α
−

−
=

= + − + +∑ . 

Now setting  

, , 1 ,αβ β −= − + 1, , 1i k for −"  and , ,k k k k ktβ α= . =

Finally ,we get the desired result  

0 ,
1

k
i

k i k
i

S S A Sβ
=

= +∑ 0

0

. 

This shows that . 0 0( , )k kS S A ASκ− ∈

4.2. Smoothing GL-BCG algorithm 
One disadvantage of the GL-BCG algorithm is that its residual norm behavior often exhibits very 

irregular. This problem can be overcome by applying the GMRS procedure to the algorithm. The smoothed 
GL-BCG algorithm is given as follows: 

Algorithm 4.2. Smoothed global biconjugate gradient (SGL-BCG) algorithm. 
Let , compute 0 0 0,Y X S R= =

1 1( )k k k k kY Y t X Y− −= + − ; 

1 1( )k k k k kS S t R S− −= + − ; 
where kX  is the approximation generated by the GL-BCG algorithm and  

2
1,k k k kF

t E S E−= −
F

,with 1k k kE R S −= − . 

Problems of breakdowns and near breakdowns for the GL-BCG algorithm and corresponding smoothed 
one are not treated in this work. 

5. Numerical examples   
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 In this section, we present some numerical examples to illustrate the effectiveness of Algorithm 4.2 for 
large and sparse matrix equations. All numerical experiments are performed on an AMD 1.4 GHZ PC with 
main memory 512 MB. We use MATLAB 6.5 with machine precision μ = . The initial 
guess

162.22 10−×

0X  is taken to be zero and the right-hand side matrix B is B=rand(N,s) where function rand creates an 
N×s random matrix with coefficients uniformly distributed in [0 1]. The stopping criterion for two methods 

is 
0

1. 7k F

F

S
e

R
≤ − . 

Example 1. We compared the performances of the GL- BCG and the SGL-BCG algorithms. We used 
matrices from the Harwell-Boeing collection: =sherman 1 and =orsirr_1. In Figure 4.1 and 4.2, we 
plotted the log10 of the Forbenius norm of the residual versus the iterations. As shown in two figures, SGL-
BCG (solide line) returns better results. 

1A 2A

Example 2. We compared the performances of the GL- BCG and the SBBCG[3] algorithms. We used 
matrices from the Harwell-Boeing collection: =cdde4 . In Figure 4.3, we plotted the log10 of the 
Forbenius norm of the residual versus the iterations. As can be seen from Figure 4.3, SGL-BCG (solide line) 
returns better results.The SBBCG algorithm fails to converge . 

3A

 
Figure4.1 =sherman1;N=1000;s=20 1A
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Figure4.2 =orsirr_1;N=1030;s=10 2A

 

 Figure4.3 =cdde4;N=961;s=10 3A
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