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Abstract.  The main aim of this contribution is comparison of method for evaluation of nonwovens surface 
uniformity based on the data in the form of rectangular arrays (quadrat method). These data can be obtained 
from digital images where the variation of mass is characterizes by the variation of grey level image. The 
evaluation of uniformity is based on the variation coefficient model, ANOVA model and spatial descriptors 
of irregularity 
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1. Introduction  
The products from nonwovens are nowadays applicable in the fields requiring relative high mass 

uniformity or uniformity of basic physico - mechanical properties. There exist a lot of methods for 
description of planar anisotropy and other structural characteristics of nonwovens (see [5] and [6]).  

The spatial variation of geometric and other properties is the main peculiarity of textile products. For the 
purpose of design, quality control and application in composites it is necessary to have tools for expressing 
this variability by suitable characteristics. Especially products from nonwovens are nowadays applicable in 
the fields requiring relative high mass uniformity or uniformity of basic physico - mechanical properties [3]. 
There exist a lot of methods for description of planar anisotropy and other structural characteristics of 
nonwovens (see [5]; [6]; [9]). Selected methods of continuous and discontinuous measurement of planar 
uniformity of nonwovens are described in the dissertation [9]. In parallel to the description of unevenness of 
linear textile structures by the length variation function, there can be constructed surface variation function 
for textile fabrics. The surface variation function can be easily used for description of unevenness or 
uniformity. Another possibility is to use some techniques based on the spatial pattern analysis as variance to 
mean ratio. 

The main aim of this work is attempt to describe surface irregularity of nonwoven textile structure based 
on the so-called quadrat method, where characteristic of quadrat is mean value of grey level. Principle is to 
divide sample to the rectangular net of cells named quadrats. In these quadrats the mean optical transparency 
(grey level) is evaluated. Direction x is equivalent to the machine direction (index i). In this direction are N 
quadrats. Direction y is equivalent to the cross direction (index j). In this direction are M quadrats. 

For evaluation of uniformity the five kinds of methods are useful.  
First one is based on the computation of variation coefficient in selected directions (machine and cross 

direction), and testing the significance of their differences [7]. 
Second one is based on the modelling of data arrays by the ANOVA (analysis of variance) type models 

and testing hypothesis about homogeneity in selected directions [10]. 
Third one is based on the analysis of random field. The moment characteristics of second order as 

spatial covariance and variogram are used for description of these fields. The fractal dimension 
characterizing random field complexity can be computed directly from variogram [4]. 

Fourth one is based on the global and local spatial variation indices of Geary and Moran type [1].  
Fifth one is based on the utilization of multivariate kurtoisis of indicator random variables [8] 
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There exist a lot of other characteristics as spatial descriptors of irregularity [6] suitable for special 
situations (point patterns).  

The aim of this work is comparison of some characteristics of uniformity on the example of spun bonded 
lightweight nonwoven lap.  

2. Irregularity characterization 
Irregularity characterization is classically based on the coefficient of variation CV or derived statistics. 

For characterization of lattice data array the models based on the ANOVA principle are often used. For 
detailed description of irregularity field the second order characteristics as function of distance separation 
vector can be used as well. These characteristics can be compared with ideal models of nonwoven structures. 
Some simple indices can be obtained from indicator random variable, which is simply threshold of original 
spatial variable.  

2.1. Spatial lattice processes 
Spatial data are investigated on the specific domain D. Usually D is a subset of two-dimensional space, 

but generally the d dimensional domain can be used and then . The vector s contains information on 
the data location. In two-dimensional space, s has 2 components (x, y) containing the coordinates. At 
locations s, the values of some variable z(s) of interests (grey level, mass, density, thickness etc.) are 
obtained. The z(s) is a random variable at each location. The general spatial model has the form{ (

dD ⊂ ℜ

) : }z D∈s s . 

There exist three basic model types: 

1: Geostatistical data. Here D is a continuous fixed subset of dℜ ; z(s) is a random vector at location 
. D∈s

2: Lattice data. Here D is a fixed but countable subset of dℜ  such as a grid some representation with 
nodes; z(s) is a random vector at locations D∈s . 

3: Point Patterns. Here D is a random subset of dℜ  and is called a point process; if z(s) is a random 
vector at location  then it is a marked spatial point process; if z(s) ≡ 1 so that it is a degenerate random 
variable, then only D is random and it is called a spatial point process. 

D∈s

For the quadrat method is quantity z(s) random function of two variables called random field. This 
random field is fully described by the n variate probability density function 

 { }1 2( , ,.. ) ( ) ,    1...n n i i ip z z z P z z s z dz i n= ≤ ≤ + =i                                             (1) 

Homogeneous random field has property of invariance according to the translation. The mean value E(z) 
is defined as  

 1( )  ( ) E z z p z d= ∫ z

z

                                                                    2) 

 Variability of random field is characterized by the covariance function 
 1 1 2 2 ( , ) (( ( )( ( ))C E z E z z E= − −1 2s s .                                                       (3) 

For the case when points s1 and s2 are coincident is covariance function reduced to the variance function 
D(s) defined as [10]  

 .                                                            (4) 2( ) ( ( ) ) ( ( ( )))D E z E z= −ss 2s

Another measure of spatial variability is so called variogram or semivariogram defined as half of 
variance of the increment (z(s1) - z(s2)) 

 ( , ) 0.5* [ ( ) ( )]D z zγ = −1 2 1 2s s s s Var( ( ) ( )) Var( ) (1 ρ( ))z z z= − + = −u u h h                         (5) 

For homogeneous random field is covariance function dependent on the distance between points  
s1 = (x1,y1) and s2 = (x2,y2) only. For this case is 2 1 2 1( , )  ( , )C C x x y y= − −1 2s s . 

For isotropic random field is covariance function invariant against rotation and mirroring. This function 
is then dependent on the length 2

2 1 2 1( ) (d x x y y= − + − 2) d and therefore . A random 
function z(s) is said to be second order stationary, if [2]  

( , )  ( )C R=1 2s s
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• the mean value exists and is independent on the location vector x, i.e. E(z) = m. 
• for each pair of random variables z(s) and z(s + h) is covariance dependent on the separation vector 

h only   2( ) [ ( ) * ( )]C E z z= +h s s h m−

The stationarity of variance imply the stationarity of covariance and variogram 
   ( ) ( 0) (0)D z C C= = =h ( ) (0) ( )C Cγ = −h h .                                            (6) 

The second order stationarity implies that the covariance and variogram are the equivalent tools for 
characterization of spatial correlation. It is clear that second order stationarity leads to the continuity at origin 
because (0) 0γ = . 

If 0(0) 0cγ = > , then c0 is called as nugget effect (small scale variations cause discontinuity at origin). If 
( ) .constγ =h  for all h then the z(.) are uncorrelated in this direction.  

The dependence of ( )γ h  on h can be expressed by the various parametrical models. Very often it is 
suitable to use the spherical model expressed in the form  

                          (7) 3
0 0( ) [1.5( / ) 0.5( / ) ]   for   or ( )   for  h c c h a h a 0 h a h c c h aγ γ= + − ≤ ≤ = + >

where h is the length of h. The distributional properties of variogram and techniques for parameter 
estimation are discussed in the book of [2]. 

For computation of sample estimators of above defined measures of spatial continuity the experimentally 
determined values of uniformity (grey level, planar densities or mass) z(si) = z(k,j) of k, j th cell (k = 1...m, j 
= 1...n) of the rectangular net are used. The sample directional variogram function for chosen separation 
vector h is calculated according to the following formula 

 
( )

2

1

1 ( ) [ ( ) ( )]
2 ( )

N

i i
i

z z
N

γ
=

= −∑
h

h s s
h

+ h                                                       (8) 

where N(h) is number of points in separation distances h. For regularly distributed points s are the separation 
distances multiples of distance between cells of net. Therefore it is possible to compute characteristics for 
directions 0o (h = c*[1,0]), 45o (h = c*[1,1]), and 90o (h = c*[1,0]) for lags c = 1,2,3...only. Averaging of 
variograms calculated in all directions leads to the omnidirectional variogram. For computation of these 
spatial measures the program NONWP written in MATLAB 7.04 was created.  

2.2. Analysis based on CV 
Surface uniformity is classically described by the coefficient of variation (CV). This coefficient is 

traditionally used as the characteristics of unevenness.  
According to the common definitions we can simply computed the overall mean, variance and 

coefficient of variation 

 1 ( )ij
i j

m z
M N

= ∑ ∑     2 21 ( )ij
i j

z m
M N

= ∑ ∑ −      s sCV                             (9) 
m

=

Here zij is selected characteristic of quadrats (here mean grey level mij.). Direction x is equivalent to the 
machine direction (index i). In this direction are N quadrats. Direction y is equivalent to the cross direction 
(index j). In this direction are M quadrats. 

The quantity CV is in fact external variation coefficient CB(F) between cell areas F. 
Ideal value of CV for nonwoven of total weight W having Poisson distribution of random fibres of 

fineness TV and density Vρ  is defined as [11] 
4

4
2( )      

2
V V

N
TCV P
W

ρπ
=  

The total variance s2 can be divided to the two terms by using of means in the machine direction and 
cross direction 

1
io ij

j
m z

M
= ∑           

1
oj ij

j
m z

N
= ∑  

Symbol „0“denotes index used for summation i.e. is mean value for i th position in the machine iom
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L

direction. For the machine direction (expansion of eqn.(14) by using of the mio) the following relation results 
[7] 

2 2 2
L Hs s s= +                                                                         (10) 

where the variance in the machine direction 2
Ls  is  

2 21 ( )L io
i

s m m
N

= −∑  

and the variance in the transversal direction 2
HLs  is  

2 21 ( )HL ij io
i j

s z
MN

= −∑∑ m  

For the cross direction is  
2 2 2

H LHs s s= +                                                                         (11) 
where the variance in the cross-direction 2

Hs  is  

2 21 ( )H oj
j

s m
M

= −∑ m  

and the variance in the longitudinal direction 2
LHs  is 

2 21 ( )LH ij oj
i j

s z
MN

= −∑∑ m  

The coefficients of variation CVL, CVHL, CVH and CVLH are obtained by dividing the corresponding 
standard deviations by the mean value m. These coefficients are from statistical point of view the point 
estimates of population variation coefficients CVPL, CVPH, etc. For creation of confidence intervals the 
variance of point estimates have to be computed [10].  

The uniformity of mass distribution can be also characterized by index of dispersion. 

 
2

d
sI
m

=                                                                           (12) 

Spatial randomness corresponds to the Poisson distribution. The null hypothesis of randomness can be 
tested by comparison of Id with quantiles of 2χ  distribution. It is possible to compute the limit ML bellow 
the pattern is uniform and limit MU above the pattern is clumped [6]. 

3. Experimental part 

  
a                          b    

Fig. 1 Raw image (a) and mean grey levels in quadrats (b) 
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The spun bonded nonwoven image (see fig. 1a) was used for uniformity evaluation. The starting quadrat 
size 2x2 pixels was selected. This size was expanded by averaging.  Mean grey levels in quadrats of starting 
size is shown on the fig. 1b. These data were used for characterization of uniformity. The influence of 
quadrat size (expanded starting size) on the corresponding areal CV was investigated by using of program 
NONWCV. 

4. Results and discussion 
The results are part of outputs from program NONWP. The dependence of CV on the quadrat area size 

(program NONWCV) is given on the fig 2 
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Fig. 2 Dependence of CV on quadrat size 
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Fig. 3 Local statistics characterizing stability of mean and variance 
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For deeper investigation of non uniformity the moving windows were used. Principle is division the 
study area to the several local neighborhoods of equal size (moving windows) and within each local window 
the mean and variance are computed. The dimension of moving windows can be gradually changed to obtain 
good identification of local anomalies. The plot of local means and variances are given in fig. 3. The row 
mean and variances are shown as well.  

There are visible some departures from constancy of mean and variance (stationarity). Deeper analysis of 
local anomalies is based on the investigation of residuals. Simple parametric model is based on the ANOVA 
model without interaction ij i j ijz μ α β= + + + ε . The residuals and squared residuals for this model are on 

the fig. 4. The residuals were computed from total mean m, row means  and column means or by 
replacing of means by medians. 

iom ojm

 
Fig. 4 Residuals and squared residuals for ANOVA model 

The local “hot spots” (anomalies) are here clearly visible. 
The division of total variance and index of dispersion can characterize uniformity. The division of total 

variance is given in the table 1.  

Table 1 Variances in main directions 

S2
L (machine) S2

H (cross) S2
L (longitud.) S2

T (transvers.) 
0.0142 0.0176 0.0816 0.0823 

The Id = 0.018 is lower than limit for randomness ML= 0.81. ANOVA analysis leads to results that 
variability in both directions is not significantly different.  

The variogram is machine direction, cross direction; diagonal direction and omni-variogram are shown 
on the fig. 5 in the log /log form 

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, 2 (2007) 2, pp 85-92 91

0 1 2 3
-6

-5.5

-5

-4.5
log Svariog columns

lo
g 
gr
(la
g)

0 1 2 3
-6

-5.5

-5

-4.5
log Svariog rows

lo
g 
gc
(la
g)

0 1 2 3
-6.2

-6

-5.8

-5.6

-5.4
log Svariog diags

log lag

lo
g 
gd
(la
g)

0 1 2 3
-6

-5.5

-5
log Svariog omni

log lag

lo
g 
go
(la
g)

 
Fig. 5 Variograms in double logarithmic plot 

The approximate linearity in double log plot enables calculation of fractal dimension from straight line 
slope [4]. The least squares estimates from initial points are: D rows = 2.24, D cols = 2.16,  
D diag = 2.29, D omni = 2.22. The surface is therefore only slightly complex. The spherical model for omni-
variogram (see eqn. (7)) is shown on the fig. 6. 
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Fig. 6. Spherical model for omnivariogram 

 By using of nonlinear least squares the following results were obtained: Co (Nugget) = 0.019,  C+Co 
(Sill) = 0.0058 and a = 4.402.  Due to high nugget effect the stationarity of data cannot be accepted.  

5. Conclusion 
The system of data analysis based on the above mentioned methods can be used for identification of spatial 
dependence for regular lattice data or planar unevenness evaluation. Tested nonwoven exhibits large-scale 
variation and slight complexity.  
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