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M achine parameters

Direct parameters:
Speed of card rollers
W eb width
Stroke frequency
Penetration depth of needles...

Indirect parameters:
Lapping angle
Average number of layers
Stroke density
Needleloom draft...

M aterial parameters

Direct parameters:
Fiber nature
Count, length, crimp...

Indirect parameters:
Average count
Blend percentage...

Functional properties

Hydraulic properties:
M aximum absorption capacity
Absorption rate
Air permeability
Filtration efficiency...

Dynamometric properties:
Breaking resistance
Elongation at break
Bursting resistance
Tear resistance...

Structural parameters

Direct parameters:
Grammage
Thickness
Pore size distribution
W eb uniformity…

Indirect parameters:
Porosity...

Σ

Process parameters
(Input variables)

Quality features
(Output variables)
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Abstract.  In this paper, we present a new fuzzy selection criterion which takes into account both the 
sensitivity of measured data and human knowledge concerning the relations between process parameters and 
quality features of nonwoven product. This selection criterion permits to rank the process parameters of the 
related nonwoven production line and take the most relevant ones as input variables of the model for 
designing new nonwovens products. Compared with the classical selection criteria, the proposed method is 
more robust and less sensitive to proximities of measurement and uncertainties. This method has been 
validated using real data collected from a nonwoven process and a predefined questionnaire filled by experts.
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1. Introduction 
Nonwoven products are fibrous materials characterized by a large range of interesting properties. Due to 

various application fields and good performance/production cost ratio, the number of end-uses designed with 
nonwoven materials has significantly grown in the last decades. Face to international competition on the 
textile market, nonwoven materials should be developed to satisfy more and more demanding and complex 
specifications and increasing requirements for international standards in different application fields. In the 
same time, nonwoven product designers are strongly involved in cost reduction projects and apply the basics 
of value analysis during the development of these manufacturing products. [1]

Fig. 1: Modelling relationship between process parameters and quality features for nonwoven products

Consequently, great attention has been paid to model the relationship between process parameters 
(machine parameters, raw material parameters, and environment parameters) and quality features (functional 
properties, structural parameters). After the definition of their global structure (single/multilayer complex 
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structure, feature of each layer…), new nonwoven products can be perfected and produced by adjusting 
process parameters according to the related model. In this paper, we suppose that the environment of the 
quality features is constant and acceptable for production. Under this condition, machine and material 
parameters are taken as input variables; structural parameters and functional properties as output variables 
respectively. The input parameters can be divided into two categories: direct parameter and indirect 
parameter. Direct process parameters are obtained from direct measurements with sensors while indirect 
process parameters can be calculated from direct parameters according to some known physical laws. In 
other words, indirect parameter can be considered as mathematical combination of several direct parameters. 
The corresponding model is illustrated in Fig.1.

However, this procedure of modelling is rather complex for the following reasons: 1) the relationship 
between input and output variables is usually nonlinear; 2) the number of process parameters is too large and 
there often exists interdependencies between them; 3) the quantity of available learning data is often very 
small; 4) the learning data are coming from an uncertain environment. In this condition, there is a strong 
need for modelling with a small set of relevant process parameters in order to reduce the complexity and 
decrease the number of trials. 

In this paper, we present a fuzzy selection method integrating both the qualitative human knowledge of 
experts and the quantitative measured data. Compared with classical selection criteria, it is more robust, less 
sensitive to proximities existing in measured data and easier to be interpreted physically. Using this criterion, 
we can effectively classify input variables by ranking and then select the most significant variables. After the 
presentation of the general selection procedure in the second section, the third section shows how we can 
explore and aggregate the human knowledge related to process/product relation. The fourth section exposes a 
method for integrating the human knowledge into the selection procedure. This procedure is illustrated using 
an example coming from the nonwoven industry. The results are finally discussed and some prospects are 
proposed.

2. Selection procedure of relevant variables
In the existing literature, most of the methods for variable selection have been carried out in the frame of 

supervised data classification, i.e. the objective of selection is to improve the classification accuracy or class 
label predictive accuracy of data samples [2]. Several well-known methods are the decision-tree method [3], 
the nearest-neighbor method [4], the mutual information measure based method [5] and the hyperbox 
generation based method [6], information-theoretical connectionist network model for removing both 
irrelevant and redundant variables [7] and wrapper model, which evaluates alternative subsets of variables by 
running some induction algorithm on the learning data and using the estimated accuracy of the resulting 
classifier as its metric [8]. There also exist some works on unsupervised variable selection using conditional 
Gaussian networks [2] and data clustering techniques [9]. 

In practice, the performance of these data based variable selection methods is strongly related to the 
quality and the quantity of data samples and the criterion defined, which may vary from task to task.      
These methods are not efficient to solve variable selection problems in some industrial processes. In these 
processes, limited by the cost and the time of measurement, the quantity of data is often too small to 
constitute a correct distribution for obtaining significant classification results. Moreover, the physical 
knowledge of experienced operators and experts on processes and products is not well exploited. In this case, 
the class separability based criteria for variable selection should be replaced by variable sensitivity based 
criteria such as gradient descent. Also, if possible, human physical knowledge on the problem and measured 
numerical data should be used in a complementary way in order to improve the criterion of selection and to 
cross-validate the results obtained from these two information sources. 

In our previous work, a classical selection criterion has been proposed to rank the nonwoven process 
parameters by linearly combining the human knowledge conformity criterion and the sensitivity of measured 
data [10]. In practice, when the values of a selection criterion for two variables are very close, they are 
generally considered as having the same level of relevancy and the order between them is not significant. 
Contrarily, for two variables having a big difference in values of selection criterion, their order should be 
significant. According to this principle, classical selection criteria are too sensitive and mask real physical 
significance in related results. In this section, we propose a fuzzy logic based linguistic criterion. With this 
criterion, we can effectively filter data proximities related to measurement and obtain only significant orders 
in the corresponding results. This criterion is expressed as F=f(H,S), in which the first element H represents 
the human knowledge on nonwoven processes and products and the second element S the sensitivity of 
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measured data defined according to the following two assumptions:

1) IF a small variation of an input variable x corresponds to a large variation of the output variable y , 

THEN the sensitivity value S  is big.

      2) IF a large variation of an input variable x corresponds to a small variation of the output variable y , 

THEN the sensitivity value S  is small.

These assumptions can be transformed into fuzzy rules for building a fuzzy model in which x  and 
y are taken as two input variables and S  as output variable. This fuzzy model includes an interface of 

fuzzification, a base of fuzzy rules, an inference mechanism and an interface of defuzzification. After the 
fuzzification procedure, each of the two input variables is transformed into a fuzzy variable with three fuzzy 
values: big, medium small, corresponding to membership functions trampf(x,[-0.5,-0.1,0.1,0.5]), 
trimf(x,[0.1,0.5,0.9]) and trampf(x,[0.5,0.9,1,1.1,1.5]) between [0,1]. The output variable S is transformed 
into a fuzzy variable with five fuzzy values: Very Small (VS), Small (S), Medium (M), Big (B), Very Big (VB), 
corresponding to membership functions trampf(x,[-0.5,-0.1,0.1,0.5]), trimf(x,[0.1,0.3,0.5]), 
trimf(x,[0.3,0.5,0.7]), trimf(x,[0.5,0.7,0.9]) and trampf(x,[0.7,0.9,1.1,1.3]) between [0,1].

We define the following fuzzy rules in Table 1 according to the human experience of experts:

Table1. Fuzzy rules for the data sensitivity

Given fixed values of x  and y , we can calculate the corresponding numerical value of sensitivity S

from these fuzzy rules. Then, we denote  ,S FL x y   . The Mamdani method [11] has been used for 

defuzzification. When removing kx  from the whole set of input variables, the corresponding sensitivity 

variation can be calculated as follows. 

Let m be the number of process parameters (input variables) assumed to be influent on one specific 
quality feature (output variable). Denote Xs = (xs1, xs2, …, xsk, …, xsm)T the data of all the process parameters 
and Ys = (y1, y2, …, yl, …, yn)

T the data of quality features that correspond to the sample s (s{1, …, z}). It is 
to be noticed that the pre-selection of the input variables is assumed by the experts according to their 
experience, voluntary allowing possible interdependencies between variables. These dependencies are 
considered during our selection procedure. All the measured data on these z samples have been normalized 
to be on the interval of [0, 1] in order to eliminate the scale effects. For two different samples i  and j (one 

pair), their variations related to all process parameters and one specific quality feature yl, denoted as ijx

and ijy  respectively, can be calculated by

 
 

2

1,...,

k
ij ip jp

p m

p k

x x x




                                                                      (1) 

By assigning : ijx x   and : ijy y   , we can obtain from the previous fuzzy model the sensitivity 

value ( , )ij ijFL x y  , corresponding to all the process parameters and the pair of samples ( , )i j . In the same way, we 

can also obtain ( , )k
ij ijFL x y  , corresponding to all the process parameters except kx  and the pair of samples ( , )i j . 

The sensitivity variation of the pair (i,j) when removing kx , denoted as  can be calculated as follows. 

( , ) ( , )k k
ij ij ij ij ijS FL x y FL x y       (2)

The general sensitivity variation ,k lS  for all  pairs of samples when removing the variable kx  is 

defined as 

small medium big
small small big very big

medium small medium big
big very small small medium

      
S
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Bigger is the value of kS , more the corresponding input variable kx is relevant to the quality feature ly . 

The objective of our criterion is to select the most relevant independent process parameters, so the 
redundant and related inputs would be removed by following backward algorithm: 

First, we identify the most relevant process parameter with highest sensitivity variation, and eliminate 
the smallest one. After they are removed, a new step for calculating the sensitivity variation with decreased 
number of inputs is generated using our fuzzy criterion. This process can be repeated until the predefined 
threshold τ is reached. At each step, the remaining unidentified dependent inputs related to the identified 
inputs will be dropped down in the sensitivity variation ranking list and be removed in the next steps. Thus, 
we can obtain a significant and independent list Xr of relevant process parameters.

In this case, the procedure of input selection is finally completed and a collection of relevant process 
parameters is selected for the modelling procedure. 

3. Aggregation of human knowledge
The objective of the aggregation procedure of human knowledge is to clarify uncertainties and 

dissimilarities according to expert’s level and confidence. The human knowledge from kth process parameter 
on lth quality feature is colleted from a predefined questionnaire filled by nonwoven experts on 
process/product relations in Table 2. For simplicity, we consider at a time that only one process parameter 
has influence on each quality feature. Also, we consider that experts have different levels of expertise and 
that their knowledge is generally incomplete and uncertain.

Table 2. Questionnaire representing the knowledge of the expert v (v{1,…,h}) related to the influence of a process 
parameter on a product structure

expert’s knowledge Degree of confidence Expert’s Level
I1… C1… E1…
Iv… Cv… Ev…
Ih… Ch… Eh…

In Table 2, Iv corresponds to the knowledge expressed by the expert v using the linguistic terms very 
positive (VP), positive (P), null (0), negative (N), and very negative (VN) representing the type of influence 
of the process parameter on the product structure respectively. Cv represents the degree of confidence of the 
expert v on his own knowledge using the linguistic terms: little certain (LC) and certain (C). Ev represents 
the expert’s level estimated by the panel’s leader using the linguistic terms: high, medium, and, low. Iv, Cv

and Ev are subjective expressions of the knowledge. Our procedure for aggregating the expert’s knowledge is 
sequenced by 3 steps:

Step1: calculation of the dissimilarities between expert’s knowledge

In practice, it usually exists dissimilarities between expert’s knowledge on relations between process 
parameters and quality features because their professional background and personal sensitivity are quite 

Input: process parameters X = {x
1
 ,…, x

k
 , …, x

m
} and one related specific quality feature y

l

Output: relevant process parameters Xr and related sensitivity variation value S

Initialize X’=X, Xr={ },S’={ }

while size(X’) > τ
  calculate the sensitivity variation of inputs in X’ related to y

l
 denoted S’= {S

1
 , …, S

k
 , …, S

size(x)
}

   Xr=Xr+{x
i
}  X’=X’-{x

i
} where S

i
=max(S’)

   X’=X’-{x
j
}  where S

j
=min(S’)

end
S=S’
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different. Therefore, at this step, we define a distance criterion for estimating the dissimilarity of knowledge 
between different experts.

Firstly, we transform the knowledge into a fuzzy variable defined by five triangular membership 
functions {VP, P, 0, N, VN} as shown in Fig.2. Each triangular membership function, denoted as 
trimf(x,[at,bt,ct]) (t[1,5]),  represents one type of influence of process parameters on quality features. 

If we remove the vth expert’s knowledge, we denote 
vt

U  as the number of remaining experts voting for tth  

type of influence and
vt

R as the corresponding percent of vote for tth type of influence, calculated by 

100%
1
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t
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. The area corresponding to 
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R percent of the tth type of influence, denoted as 
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A c a  and illustrated in Fig.3.

Denote vC  as the centre of gravity of the voting region trimf(x,[av,bv,cv]) by vth expert. Also, we denote 
'
vC  as the centre of gravity of the voting region by the other experts except v. The distance dv is calculated 

between these two centres of gravity using the following equation
5

'
5

v

v

t t
t

v v v v

t
t
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d C C b

R
   




 (4)

The resulting distance is then transformed into linguistic value from {small, medium, big}. These 
linguistic values correspond to the uniform triangular membership functions trimf(x,[-1,0,1]), trimf(x,[0,1,2])
and trimf(x,[1,2,3]) between [0,2].

Larger the distance dv is, more dissimilarity between vth expert’s knowledge is related to the other experts.

Step 2: optimization of the knowledge’s weight 

At this step, fuzzy logic is used to determine the weights of knowledge according to the calculated 
distances, expert’s professional levels and degrees of confidence. Firstly, we consider that the weights of 
knowledge for different experts are fuzzy values with triangular membership functions {very small(VS), 
small(S), medium(m), big(B), very big(VB) correspond to triangular membership functions trimf(x,[-
0.25,0,0.25]), trimf(x,[0,0.25,0.5]) , trimf(x,[0.5,0.75,1]) and trimf(x,[0.75,1,1.25]) between [0,1].

The weight wv corresponding to the vth knowledge (v{1,…,h}) can be estimated using a set of fuzzy 
rules obtained according to the following principles: 

1) if the level of an expert is high and his/her confidence on the knowledge is high and the distance of 
his/her knowledge is close to that of the other experts, then the corresponding weight should be enhanced 
and the related knowledge can be considered as a very important information in the aggregated final result. 

2) If the level of an expert is low and his/her confidence on the knowledge is low and the distance of 
his/her knowledge is far away from that of the other experts, then this knowledge should be removed. These 
two extreme principles and other observation lead to the construction of the 18 fuzzy rules shown in Table 3.

Table 3. Fuzzy rules for estimating knowledge’s weight

Fig. 2: Fuzzy variable representing the knowledge  Fig. 3: illustrated 
vt

A
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The bigger is wv, the more reliable the vth knowledge is and the more important information this expert 

can provide. These rules have been validated by professional experts on nonwoven process. 

Step 3: aggregating the knowledge using OWA

At this step, the entire expert’s knowledge is aggregated using OWA operator [12]. The new weights w’v

are then calculated: w’v=wv/sw  with 
1

h

v
v

sw w


 (v[1,h]).The type of influence ‘VP’, ‘P’, ‘0’, ‘N’ and ‘VN’

are then replaced by numerical values B=[1,0.5,0,-0.5,-1]’
. Thus, the aggregating value of expert’s knowledge, 

denoted Hk,l is estimated by flowing equation

, 1 2 3 4 51 0.5 0 ( 0.5) ( 0.5)T
k lH W B w w w w w               with W=[w’v; v[1,h]]

According to this procedure, Hk,l=1 corresponds to the most important influence of kth process parameter 
related to lth quality feature; and a small value of Hk,l is considered as non important influence. 

4. Combination between human knowledge and numerical sensitivity
In this session, fuzzy logic is used for obtaining a more robust ranking criterion combining two elements 

Sk,l and Hk,l according to the fuzzy rules shown in Table 4.

Table 4 Fuzzy rules for combining data sensitivity and human knowledge 

These fuzzy rules permit to build a fuzzy model in which Sk,l and Hk,l are taken as two input variables and 
Fk,l as output variable. After the fuzzification procedure, each of them is transformed into a fuzzy variable 
with three fuzzy values: big, medium and small. The Mamdani method [10] is used for calculating the output 
value from input values. 

We consider that the output variable Fk,l varies in the range of [0,1]. More the value of Fk,l is close to 1, 
more the corresponding variable xk is relevant. In general cases, the membership functions of Sk,l can be 
denoted as Triangle(e1,e1,f1), Triangle(e1,f1,g1) and Triangle(f1,g1,g1). the membership functions of Hk,l can be 
denoted as Triangle(e2,e2,f2), Triangle(e2,f2,g2) and Triangle(f2,g2,g2).The corresponding parameters e1, f1 ,g1

and e2, f2 ,g2 are defined by  1 ,min k l
k

e S ,  1 ,max k l
k

g S  and 1 1
1 2

e g
f


 ;  2 ,min k l

k
e H , 

 1 ,max k l
k

g H  and 2 2
2 2

e g
f


 .

5. Analysis of the results for a nonwoven process
In this part, we validate our fuzzy criterion using a series of 23 sets of data provided by a nonwoven 

process dedicated to liquid absorption. Each set of data corresponds to a nonwoven product generated by 
experimentation.

First, we propose to study the quality feature/process parameters relations for a nonwoven product which 
is manufactured by a drylaid needlepunched process. We focus on six direct process parameters and three 
indirect process parameters related to the cross-lapper and needle-loom. These parameters are firstly pre-
selected by nonwoven experts according to their possible influence on quality feature ‘porosity’, which is

small medium big
small small medium medium

medium small medium medium
big medium medium big

if       is

and if       is

,k lS

,k lH
,k lF

Certain Very Big Big Medium Big Medium Small Medium Small Small
Little certain Big Medium Small Medium Small Small Small Very Small Null 

Small Medium Big Small Medium Big Small Medium Big

High level

Dk Dk Dk

Ck

Ek Ek

Medium level low level
Wk

Ek
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one of the main critical structural parameter related to super-absorbent properties. The nonwoven direct 
process parameters are: ‘x1: take-off apron speed of cross-lapper’, ‘x2: delivery apron speed of the cross-
lapper’, ‘x3: production speed’, ‘x4: stroke frequency’, and ‘x5: penetration depth of needles’, and the indirect 
parameters are: ‘x6: needleloom draft’, ‘x7: number of layers’ and ‘x8: stroke density’. We predefined a 
selection threshold at 50% of the total amount of inputs in the final selected list (τ = 4). The steps for 
identifying the relevant inputs are presented in Table 5.

Table 5 Identification of relevant inputs using the fuzzy selection criterion (without human knowledge) 

Remaining inputs Significance ranked by ascending S Identified input Eliminated inputs
Step 1 All inputs , x1 to x8 x7, x5, x2,x6, x1,x3,x8, x4 x7 x4

Step 2 x5, x2,x6, x1,x3,x8 x5, x6, x8,x3,x2,x1 x5 x1

Step 3 x6, x8,x3,x2 x6, x8,x3,x2 x6 x2

Step 4 x8,x3 x8,x3 x8 x3

Using the fuzzy selection procedure, we identify the ‘x7: number of layers’, ‘x5: penetration depth of 
needles’, ‘x6: needleloom draft’ and ‘x8: stroke density’ as the most relevant independent process parameters.

Secondly, we continue the procedure by combining obtained results and the human knowledge collected 
from a predefined questionnaire on process/product relations filled by experts. 

Table 6 Identification of relevant inputs using human knowledge

distance weight distance weight distance weight distance weight distance weight
Direct parameters Penetration depth of needles 0.3907 0.6471 0.2500 0.8270 0.2500 0.4276 0.3907 0.6471 0.2500 0.6776 0.6629

Number of layers 1.0000 0.7500 0.2499 0.4277 0.2499 0.4277 1.0000 0.5000 1.4996 0.2177 0.4443

Needleloom draft 0.8423 0.7538 0.9999 0.5001 0.3317 0.2354 0.2503 0.6776 0.2503 0.4276 0.4071
Stroke density  1.0000 0.5000 0.4473 0.6356 0.8317 0.3023 0.4473 0.6356 0.8317 0.5523 0.2698

Process 
parameters

High Level
Expert 5

Influence on "porosity"

High Level Low level Medium Level Medium level
Expert 2

Indirects parameters

Expert 3 Expert 4Expert 1
OWA      

Relevancy factor

The corresponding results obtained after the aggregation procedure of the human knowledge is illustrated 
in Table 6. Finally, we combine the data sensitivity and human knowledge. All theses results are compared 
to classical criterion and are presented in Table 7.

Table 7 Comparison between different selection methods 

Fuzzy Sensitivity 
Variation 

(FSV)

Human 
Knowledge 

(HK)

Fuzzy combining 
sensitivity variation and 

human knowledge 
(FSVHK)

Classical criterion 
(CC)

Process parameters

value rank value rank value rank rank rank

Penetration depth of needles -0.0076 2 0.6629 1 0.5500 1 0.5992 3
Number of layers 0.0171 1 0.4443 2 0.4990 2 0.2500 4
Needleloom draft -0.0016 3 0.4071 3 0.4640 3 0.9659 1

Stroke density -0.0602 4 0.2698 4 0.2680 4 0.6111 2

In Table 7, we can notice that ‘penetration depth of needles’ rise to the first rank in FSVHK (rank 1) 
compared with FSV (rank 2). The result of FSVHK is more conform to expert’s knowledge than that of FSV 
because it deals with more complete information on the relation between process parameters and quality 
features (Fig.4). We can also notice that the ‘number of layers’ input variable is selected as a relevant 
process parameter (rank 2) with FSVHK compared with that of CC This result is due to fuzzy capability of 
taking into account significant data variation trend (Fig.5) and filter useless variation (non variation) (rank 
4).The ‘needleloom draft’ appears to be relevant with the CC (rank 2). Contrarily, the FSVHK shows that 
this variable is less relevant comparable to the other three relevant parameters (rank 4). This result shows 
that FSVHK is more robust and less sensitive to the data measured in a very small range (proximity) (Fig.6).
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number of layers

After the validation of experts, ‘penetration depth of needles’ , ‘number of layers’ and ‘needleloom draft’ 
are influences which are more important than ‘stroke density’ on ‘porosity’. This result appears in the fuzzy 
criterion thank to the robust of the fuzzy selection criteria. We can also notice that the fuzzy criterion can 
filter data complexity related to manufacturing process and can provide only a better ranking result according 
to the process parameters relevancy.

6. Conclusion
In this paper, we present a fuzzy criterion for selecting relevant process parameters from a nonwoven 

process. This criterion permit to combine data sensitivity is considered to be more relevant to specific 
manufacturing processes, and human knowledge, is considered to be more relevant to general professional 
knowledge of experts and operators. The selection of process parameters allows producers to adjust only a 
few numbers of the most relevant parameters in order to meet the requirements of customers on product 
quality. Compared with the other numerical selection criteria, this fuzzy selection criterion can lead to more 
robust, more significant and more physically interpretable results. Another advantage is that the proposed 
selection criterion can deal with a very few number of learning data. Then, it can be effectively applied to 
industrial selection problems in which production time for obtaining learning samples is rather limited and 
experimentation cost is often high. This method has been successfully applied to the design of a nonwoven 
process and can also be extended to other industrial problems.
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