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Abstract. Error bounds between non-stationary binary subdivision curves/surfaces and their control polygons
after k-fold subdivision are estimated. The bounds can be evaluated without recursive subdivision. A
computational formula of subdivision depth for non-stationary binary subdivision surfaces is also presented.
From this formula one can predict the subdivision depth within a user specified error tolerance. Our results
not only remove errors in the results of [3] but also contain the generalization of their results.
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1. Introduction

In recent years subdivision schemes have been important because they provide an efficient way to
describe curves, surfaces and other geometric objects. Subdivision allows to generate smooth geometric
objects from a given control polygon. With this coarse polygon a sequence of refined polygon can be
computed. In the limit this sequence of polygon converges to a continuous smooth object. Each refinement
step can be divided into two different aspects. First, a topological operation is performed. Therefore new
vertices are added to the control polygon and the rectangles/triangles are split. Then the geometry of the
control polygon is changed by a smoothing operation. The question is how refined polygon approximates the
limiting curve/surface [1], [2], [3], [5], [6], [7], [8]. [9] and [10]. This question appears in many applications
as rendering, intersection, testing and design. Existing methods only compute the error bounds for stationary
subdivision schemes. To best of our knowledge no work has been done to compute the error bounds for non-
stationary subdivision schemes. As non-stationary subdivision schemes are the generalization of stationary
subdivision schemes. Therefore we are interested in getting error bounds estimations between non-stationary
subdivision curves/surfaces and their control polygons. In this article, for simplicity we have used the
notations and methodology of [3].

The rest of the paper is arranged as follows. In Section 2, we give the definition of non-stationary
subdivision curves and gather some notations to set out our terminology needed in Section 3. We present our
main result to estimate error bounds between non-stationary subdivision curve and its control polygon in
Section 3. In Section 4, we give the definition of non-stationary subdivision surfaces and gather some new
notations to set out our terminology needed in Section 5. We present our main result to estimate error bounds
between non-stationary subdivision surface and its control polygon in Section 5. In this Section we also
derive a computational formula of subdivision depth for non-stationary subdivision surfaces.

2. Non-stationary subdivision curves
Given a set of control points pik eR",ieZ,N>2, where k is a nonnegative integer. A non-
stationary binary subdivision scheme is defined by

m
kel _ K Ak
Py _zaj Pisj,
=0

. @.1)
Para = Zb:( pik+j ,
=0
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180 G. Mustafa, et al: Estimating error bounds for non-stationary binary subdivision curves/surfaces

wherem is greater than zero. The coefficients {a'j‘ }T:o and {b;‘ }T:O are called the mask at the kth level of the

subdivision scheme. If the mask is independent of k, then the scheme is called stationary, otherwise it is
called non-stationary. A necessary condition for the uniform convergence of the subdivision scheme (2.1) on
the diadic points for arbitrary initial data, is that

ia? ~ ibr ~1. (2.2)
e '

j=0

2.1. Notations
We gather here some notations to set out our terminology needed in the sequel.

1 k+1 k
Tk = miax”pzi - P H!

k+1 (23)

1
P2ia _E( pik + pik+1)

T = max
I

o= maxt S| S . 24
j=0 i=0

where
m m i m 1
Al =>af,B{=>b j=1.B;> b -
i=j+1 i=j+1 i=1
¢ =max|C, D} (2.5)
where

C= max{mi\c}—l\,l =1,2,...,k}, D= max{zm:\D;-l\,l =1,2,...,k}, o :ZJ“(aik ~b)) and D¥ =a* —C¥.
j=0 j=0 i=0

3. The error bounds for non-stationary subdivision curves

The aim of this section is to estimate error bounds between limiting non-stationary subdivision curves
and their control polygons. First we prove the following Lemma’s needed for Theorem 3.5.

Lemma 3.1. Given initial control polygon p; =p;, i€Z , let the values p;, k>0 be defined
recursively by non-stationary subdivision scheme (2.1) together with (2.2) then

T} < 3 A max] ot - pf | @1

where T, and A;‘ are defined in (2.3) and (2.4) respectively.
Proof: From (2.1) and (2.2)

oy -0t =St [ Sai ot
=0 =0
This implies
- pf = (alk +a, +...+ar';Xpik+1 - pik)+(a2k +a; +...+ar';Xpi“+2 - pi'il)+...
+(ari:1—1 + arI:]Xpitm—l - pilim—z )+ (arl; Xpilim - pilim—l)'

k+1

p2i

From this we get
K kO ak(k k
2 — P =ZAj (pi+j+1_ pi+j)'
j=0

where Af = i_zr;aik. If T = miaXH pet— pk H ,then T.! < E‘Af‘mgx” Pl — pi H This completes the proof.
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Lemma 3.2. Given initial control polygon p°’ = p,, i €Z, let the values p, k>0 be defined
recursively by non-stationary subdivision scheme (2.1) together with (2.2) then

m-1
2 k k k
TZ < X [Bf|max|pf; - i

=0

where T, and B are defined in (2.3) and (2.4) respectively.
Proof: From (2.1) and (2.2)

1 o 1( &
Pais —E(p? +piy) = Zob,-k Py —E(Zob?](pf +pky).
j= j=
1 m
=(Ejzob:'<(pik+j + pik+j - pik - pik+1)’
j=

pl2(|++11 _%(pik + pik+1) = %{_ bg(piku - pik )+ blk(pik+l - pik)

+ b; (pik+2 - pik+1 + pik+l - pik )+ ot brl;(pik+m - pik+m—l + pik+m—l"' - pik+l + pik+1 - pik )}

Pk =5 (P4 PEy) =5 (b5 +bY kb NP, = pi )+ of b2 4.+ D NP, — i)
+(b3k +b; +"'+b:1xpik+3 - pik+2)+"'+(br'1<1—1 +b:1xpik+m—1 - pik+m—2)+(brl:1xpik+m - pik+m—l)'

m
Since from (2.2), > b —=1=—by, then we have

i=1

k+1_£( k. k)_m_lBk(k Ak )
p2i+l 2 pi pi+1 _Zo j pi+j+l pi+j '
j=

where B:.‘ = Zbik, j>1B :zbik _%_
i=j+1 i=1

If

k+1

1
P2i _E(pik + pik+1) ,

T, = max
1

then
1 < 3ot et -

This completes the proof.

Lemma 3.3. Given initial control polygon p° = p,, i € Z, let the values p), k>0 be defined
recursively by non-stationary subdivision scheme (2.1) together with necessary conditions (2.2). Suppose
P* be the piecewise linear interpolation to the values pik,then

[Pt =P <gmax|pl, - pi]. 33
where ¢ is defined in (2.4).

Proof: Let ||||OO denote the uniform norm. Since the maximum difference between P*' and P* is

attained at a point on the (k +1)th mesh, then
HPk+1 - PkHw < max{l’kl,Tkz}, (3.4)

where
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1 k+1 k
Tk = miaXH P — B H’

k+1 (35)

1
P2ia _E(pik + pik+1)

T/ = max
I

¢ = max{f‘Aﬂ,mi‘Bﬂ},
=0 =0

then from (3.1), (3.2), (3.4) and (3.5) we have

[P =Pt < gmaxpt, - pi].
This completes the proof.

Lemma 3.4. Given initial control polygon p°’ = p,, i €Z, let the values p, k>0 be defined
recursively by non-stationary subdivision scheme (2.1) together with (2.2), if ¢ <1, then

max|pf, - pi| < () max|p?, - p7). (36)
where ¢ is defined in (2.5).
Proof: We claim:
P31 — P = mz_lc?_l(pit_jlﬂ - pii:-_jl)i (3.7)
j=0

j
where C' = (af ™" —b™").
i=0

We can prove above claim by induction on m. Let m =1 then from (2.1)

p;i” B pgi - (bﬁl)(_l - ag_l)pik_l + (blk_l - alk_l)pili_ll.

From (2.2) we have b/™" —a, " = a ™ —b™. This implies

1-1
Pia - i = 2,C1 (Pl - b))
] =l

j
where C{™ =" (af™" —b/™) . This proves our claim form =1.
i-0

Now we prove our claim form = 2. From (2.1)
pis — Pk = (b —al ™ pi 7 + (b o + (bi -k iy

From (2.2) we have by —aj™ =a ™ —b{™ +a" —b/™". This implies

k k k-1 k-1 k-1 k-1 k-1 k-1 k-1 k-1 k-1 k-1
Poia — Py :(ao _bo Xpm + B )+(a0 _bo +a _bl Xpi+2 — Pi )
Thus we get
2-1

pgm - pgi = ZC?_l(pit_jlﬂ - pit_jl)'

j=0

j
where C{™ =" (af™ —b/™) . This proves our claim for m = 2. Similarly we can find that claim is true
i=0
forall m.
We also claim:
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P, — Pl = > D (plt, — pit), (3.8)

j=0
j
k-1 k-1 k-1 K- _ okl ~k-L
where D; _-Eo(bi a )+a; =a; —-C;m.
i=

Similarly we can prove claim by induction on m. Let m =1 then from (2.1)

p:i+2 p2|+1 bk lp|k - ( (I)(_l _blk 1>p|+l + ak lp|k-¢—21
Since from (2.2) a; " =b}" —af™ + b , then we have

p;i+2 p2|+1 {(bk - - ak l)+ ak l}(le pikil)-i_
{bi—ag™ )+ (ot —al )+ al* [ pir - pid).

This implies

1
plz(nz - p|2(i+l = z D;(il(piﬁijlﬂ - pik;jl)’

=0
i
where DI =>"(b/" —a")+aj" =a{" —~C|™". This proves our claim for m=1. Similarly we can

prove the claim for all m.
From (3.7) and (3.8) we get

maXH p.+1 P H < (ZC - 1] maXH p|+1 l‘

Recursively we get

max| pt; — pf| < (€ max|p2, - p?|. max|pt, — pi| < (B) max|pS, - pf]|

ot <[ S01 me - o1

j=0

where

and

If o= max{é, [3} then
miaXH pik+1 - pik H < (¢)k miaXH p&l - piOH :
This completes the proof.

Remarks 3.1. The main problem in Theorem 1 [3] is that its proof contains error on page 599 in
equation (9). Its corrected form is given in Equation (3.7) of our Lemma 3.4.

Theorem 3.5. Given initial control polygon pio =p,, i €Z,let the values pik, k >0 be defined
recursively by non-stationary subdivision scheme (2.1) together with necessary conditions (2.2). Suppose
P* be the piecewise linear interpolation to the values pik and P be the limit curve of the scheme (2.1). If

p <1, (3.9)
then error bounds between limit curve and its control polygon after k-fold subdivision are

Hpk _ PwHw < ¢ﬂ(1((p_)kj' (3.10)

-p
where 3 = max” P, — p,OH ¢ and ¢ are defined in (2.4) and (2.5).
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Proof: From (3.3) and (3.6) we have HPk+1 - PkHw <h(p) miaxH P, - pIOH If = miaxH Py — pIOH

k
then HP"+l - PkH < ¢f(p)". Using triangle inequality we have HP“ - P°°H < ¢ﬂ[l((p_)j, This completes
© © _ ¢
the proof.

Remarks 3.2/ In non-stationary subdivision schemes the subdivision mask is updated during each
subdivision level. In particular, if the subdivision mask does't change by increasing subdivision level then
non-stationary schemes coincides with stationary schemes. In this particular case, Theorem 3.5 is exactly the
same with Theorem 1(after correction) of Mustafa et al. [3].

Corollary 3.6. Given initial control polygon piO =p,, 1 €Z, let the values pik, k>0 be defined

recursively by non-stationary subdivision scheme for curve interpolation [4]. Suppose P* be the piecewise
linear interpolation to the values pik and P be the limit curve of the subdivision scheme. Then

el o120

l1-¢

where 5= max|p?, - p?|, 4~ max{1,§+\wo\+

1w
2

},(p=%+ 2w°| and w° =w is initial weight

parameter.
Proof: A non-stationary subdivision scheme for curve interpolation [4] have following subdivision mask

(,a¥ 2% a4 )= (010,0), (bg,blk,b;,b;):[_wk,%+wk,%wk,_wkj.

Since above subdivision mask approximately satisfy (3.9) for —0.2499 < w* < 0.2499 , then by (3.10) we
have the result.

4. Non-stationary subdivision surfaces

Given a set of control points pik’j eRM, i, jeZ,N >2, where k is a nonnegative integer. A tensor
product of non-stationary binary subdivision scheme (2.1) is defined by

k N kok nk
+1
p2i,2j - z a'r a‘s pi+r,j+s
r=0 s=0
k At kiwk Ak
+1 _
p2i,2j+1 - zzar bs pi+r,j+s
=0 s=0
'm m (4.1)
k+1 _ kqk ~k
p2i+l,2j - zzbr a‘s pi+r,j+s
r=0 s=0
k At kink Ak
+1 _
p2i+1,2j+l - zzbr bs pi+r,j+s
r=0 s=0

where m is greater than zero. The coefficients {a:f}r:: and {b;‘ }T:O are called the mask at the kth level of

the subdivision scheme. If the mask is independent of k, then the scheme is called stationary, otherwise it is
called non-stationary. A necessary condition for the convergence of the subdivision scheme (4.1) for
arbitrary initial data, is that

ia? ~ ibjk ~1. (4.2)

4.1. Notations
We again gather here some new notations to set out our terminology needed in the coming Section.

v = max|AC, AB, BE @3

JIC email for contribution: editor@jic.org.uk



Journal of Information and Computing Science, 2 (2007) 3, pp 179-190

where

~ m .
A= max{z al?|,
r=0

m-1

=12,..., k},é:max{zm; =12, k},
i=12,..., k}, [3=max{i; =12, k},
= (@l -b{) a D} =a ~C.

sheSI) - Sel )3
T DoIIIS o) P ) SIS )

m m
where A = > a and B{ = ) b,

t=s+1 t=s+1

cit

r

é = max{

r=0

b

:‘ag B!

S

>

. ¢M3

-bll—‘ r\>|r—\

a=Ylaile SaSlal =D 2P
t=1 r=0 = t=1 = =
:Zm:‘btk‘+zm:af28k+i :Zm:‘btk‘+zm:bf28k l,
=1 r=0 = =1 r=0 =
and t t
& =il‘atk (il atk“"mz_ll‘AgU' &, Zi atk (i btk +m_l B_cl,( ],
t= t= S= t

=1
k
b

:g\bf@amzw\j &= Z\bk\ft j

+

1 k+1 k
Mk = maXH Paizj — pi,j”’

k+1

M = maX p2|+l 2j (plkl + pik’flvj 1’

k+1

Mk3 =MmaX|i Py 5j.1 — (pik,j + pik,j+1*

|vJ

4 1
M: = | J p|2(|+11 2j+1 (pik,j + pik+l,j + pik,j+1 + pik+1,j+11'
Ijl_ p|+lj pik,j1
N P A maxHA, =123

k _
A| j.3 p|+l j+1 pl,j+l’

5. The error bounds for non-stationary subdivision surfaces

185

(4.4)

(4.5)

(4.6)

4.7

(4.8)

The aim of this section is to estimate error bounds between limiting non-stationary subdivision surfaces

and their control polygons. First we prove the following Lemmas needed for Theorem 5.7.

Lemma 5.1. Given initial control polygon p ----- , 1€ Z,let the values pIJ k >0 be defined

recursively by non-stationary subdivision scheme (4.1) together with (4.2), then

My <mp+175 +E7s

(5.1)
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where 7,,7,,&,, Mi and ytk,t =1,2,3, are defined in (4.4)-(4.8).
Proof: From (4.1) and (4.2) we get

Pt _ pk =zar(za:(pa,,j+s _ pr,,-)j- 62)
r=0 s=0

Since
k([ K k k(K k k(K K
a, (pi+r,j+s —Pi; ): a, (pi+r,j —Pi; )+ a (pi+r,j+1 —Pij )"‘
s=0
k( ~k K k k
a, (p|+r i+2 7 Pisr,jr T Pisr,jr — Bijj )+
k( ~k k k k k k
3 (p|+r j+3 pi+r,j+2 + pi+r,j+2 - pi+r,j+1 + pi+r,j+l - pi,j )+"'+
k k k k k k k k
m(p|+r jem — Picr jema Tt Pidr iz = Pisrjuz T Pidr a2 = Pisrjr T Pisrjn — pi,j)
Hence

as(pikﬂ,jﬂ - pik,j ): ag(pikﬁ,j - pik,j )"‘

R

m-1
k k k k k k
a‘t (pi+r,j+l - pi,j )+ z As (pi+r,j+s+l - pi+r,j+s )'
s=1

m
where A{ = > a . Taking sum on both sides of above equation we get

t=s+1

r=0

St St ot - 1) = el ot - 01
2| 2,

(5.3)
m m-1
atk[ a:f (pik+r’j+1 - pik,j )} + zar (z Ask (pi':-r,j+s+1 - pik+r,j+s ))
t=1 r=0 r=0 s=1
Since
Z;,a:((pm i — P J) k(pik+1,j - pik,j)+ a;(pik+2,j - pik+l,j + pik+l,j - pik,j)
+a; (pu+31 pik+2,j + pik+2,j - pik+1,j + pik+1,j - pik,j )+
8 (P = Plms; oot Pa = Play + Pl = Pl + Pl — P )
Hence
m m m-1
ak(pt,; — bty )= D2k (pls; — b+ 2 APl — P ).
r=0 t=1 s=1
Similarly

a}r( (pik+r,j+l - pik,j ): a(l)( (pik,j+1 - pik,j )+

m-1
k k k k k k
zat (pi+1,j+l - pi,j )+ z As (pi+s+1,j+1 - pi+s,j+1)
t=1 s=1

Substituting these sum into (5.3) and then from (5.2) we have

-
3 HMB
o
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m m 2
o - ol =@ 3 ot -l b St | (Bl el
1 1
m m-1
O U
1 1
Ok RS ak( k K N ST k
(z at ]ZAS (pi+s+1,j+1 - pi+s,j+1)+ zar (ZAS (pi+r,j+s+1 - pi+r,j+s )]
s=1

t=1 r=0 s=1

A (Pfas = P, )+

5=

This implies

m m-1
1 k k k k
M < \%\(Z i+ 2 Jrnia,.x %5
t=1 s=1 ’

m m m-1
o[ St 3l 55 s Jmax |
t=1 r=0 s=1 "
m m m-1
I DTS L IS
t=1 t=1 s=1 )

1_ k+1 k
where M, = ITIIFJJ\XH P2i2j — pivJ'H‘

Using notations from (4.4)-(4.8) we can rewrite above inequality M| <77 + 7,75 +&ys . This
completes the proof.

By using the technique of Mustafa et al. [3] and the one used in Lemma 5.1 one can easily prove the
following Lemmas.

Lemma 5.2. Given initial control polygon pfj =P i eZ,let the values pi'fj, k >0 be defined
recursively by non-stationary subdivision scheme (4.1) together with (4.2), then
Mk2377271k+727;+§27§’ (5.4)
where 7,,7,,&,,M/ and y,t =1,2,3, are defined in (4.4)-(4.8).
Lemma 5.3. Given initial control polygon pfj =P I €Z,let the values pi‘fj, k>0 be defined
recursively by non-stationary subdivision scheme (4.1) together with (4.2), then
Msgﬂshk"'fa?/:"'éa?/: ' (5.9)
where 77,,7,,&, M2 and »{,t =1,2,3, are defined in (4.4)-(4.8).
Lemma 5.4. Given initial control polygon pfj =Pij i eZ, let the values pi‘fj, k >0 be defined
recursively by non-stationary subdivision scheme (4.1) together with (4.2), then
Mf£ﬁ471k+f472k+68473l:v (5.6)
where 77,,7,,&,,M, and »{,t =1,2,3, are defined in (4.4)-(4.8).

Lemma 5.5. Given initial control polygon pfj =Pij i eZ,let the values pi‘fj, k >0 be defined

recursively by non-stationary subdivision scheme (4.1) together with (4.2). Suppose P be the piecewise
linear interpolation to the values pi'fj, then

[Pt —P¥|. <mrf +ok + &4, 5.7)

where 7= max{nl,nz,ns,m} , T= max{z'l,rz,rs,q} and &= max{§1,§2,§3,§4} ,  Where
N, 7T &, t =1...4 are defined in (4.4)-(4.6), ;/tk ,1=1,2,3, are defined in (4.8).
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Proof: Let ||||OO denote the uniform norm. Since the maximum difference between P**! and P* is

attained at a point on the (k +1)th mesh, then
[Per—P¥| <max{mi,M2 MM, (5.8)
where M, ,M?,M?, M/ are defined in (4.7).
If n= max{nl,nz,ns,m} , T= max{z'l,rz,rs,q} and &= max{fl,§2,§3,§4} ,  Where if
N, 7. &, t =1...4 are defined in (4.4)-(4.6), then from (5.1), (5.4), (5.5), (5.6) and (5.8) we have
HPk+1 - PkHw <nyf+oys + &y,

where 7t —maxHA ‘t:1,2,3.

Ijt‘

Lemma 5.6. Given initial control polygon pfj =Pij i e Z, let the values pi‘fj, k >0 be defined
recursively by non-stationary subdivision scheme (4.1) together with (4.2). If <1, then

7<) rit=123, (5.9)
where y and }/tk are defined in (4.3) and (4.8).
Proof: Using (4.1), (4.2) and by utilizing the approach used in the derivation of (3.7) and (3.8) we get

plz<i+1,21 p2| 2] Zak l(Z(brk_l _a:(_l)pili_rl,mj zak 1(2Crl<_l(pit_rl+l,j+s - pili_rl,j+s )j’ (5.10)

r=0 r=0

r

where C** = Z(atk‘l — btk_l),

t=0
k k - k-1 S k-1 k-1 k-1
p2i+2,2j - p2i+1,2j = Zas (Z Dr (pi+r+1,j+s - pi+r,j+s )J' (511)
s=0 r=0
where D' =a** -C**,
k k UNPRT S Sy k-1
p2i+1,2j+1 - p2i,2j+1 = st (zcr (pi+r+l,j+s - pi+r,j+s )]’ (512)
s=0 r=0
k k . k= & k= K— K=
p2i+2,2j+1 - p2i+1,2j+1 = zbs 1(2 Dr l(pi+r1+1,j+s - pi+rl,j+s )]’ (513)
s=0 r=0
k-1 S k-1 k-1 k-1
p2|+1 2j+2 p2| 2j+2 T Za [Zcr (pi+r+l,j+s+l - pi+r,j+s+1)] ' (514)
r=0
k- S k- k- k-
p2|+2 2j+2 p2|+1 2j+2 — Zas l[z D 1(piﬁ-rl+l,j+s+l - pi+r1,j+s+1)j ' (515)
r=0
k k T R PRy k-1
P2i2ja = Paigj = Zar (ch (pi+r,j+s+1 = Piir jus )j (5.16)
r=0 s=0
k v k- k- k-
le 2j+2 p2| 2j+1 — za l(z D 1(p|+r]:j+s+1 - pi+rl,j+s )J ! (517)
r=0 S

-1

S=i

p2|+121+l p2|+1 2j — Zbk l[

C p|+r J+s+l pilrrl,ﬁs )J ! (518)
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m m-1
k K k= k1 ( k= K=
p2i+1,2j+2 - p2i+1,2j+1 = Zbr l(z Ds 1(piJrrl,jJrsA - pi+r1,j+s )j (519)
r=0 s=0

Using (5.10)-(5.13) we get

m m-1
k k-1 k-1 k-1
max‘A. : ‘ < a C max| A,
i ij,1 ; r ; S i ij,1
k Zm k-1 Zm k-1 k-1
ma:x Ai,j,l‘ < ar Ds maX Ai,j,l ’
h r=0 s=0 b
k Nkt [ [~ ke k-1
max‘A.. ‘s Eb‘EC‘ max||A; |,
N ij,1 ~ r ~ S iLj i,j1
k SRR k-1 k-1
ax‘A ‘s E b*™ E D~ ax|| A’
i i,j,1 ~ r ~ S i ijl

Recursively we get

m m-1 m m-1 m m-1
k k-1 k-1 k-2 k-2 0 0 0
(S Ser S Ber L S
r=0 s=0 r=0 s=0 r=0 s=0
k S k-1 k-1 e k-2 C k-2 0 e 0 0
71 < a‘r ‘Z‘Ds Zar ZDS ‘ arZDs 71’
r=0 s=0 r=0 s=0 r=0 s=0
k Ot [V | ke [N k2 [ |~ k-2 IR
< 2Rl e b el
r=0 s=0 r=0 s=0 r=0 s=0
S k-1 k-1 C k-2 C k-2 0 N 0 0
}/1S Zbr ‘Z‘Ds zbr ZDS ‘ erDs 71'
r=0 s=0 r=0 s=0 r=0 s=0

where 7 = maxHAk. le.
i,j o

From above inequalities and (4.3) we get p, < (AC)k 7w, o< (Af))k 7w, o< (éé
7 < (éf))k 7., where A,B,C,D are defined in (4.3).

If = max{Aé,Aﬁ, éé éf)} then we get }/lk < (l//)k }/10. Using (5.14) and (5.15) recursively we get
7E < ()52, similarly from (5.16)-(5.20) we get 7¥ < (). This completes the proof.

Remark 5.1. The main problem in Theorem 2 [3] is that its proof contains errors on page 609 in
Equations (38), (40), (42), (44) and (46). Their corrected forms are given in Equations (5.10), (5.12), (5.14),
(5.16) and (5.18) respectively of our Lemma 5.6.

Theorem 5.7. Given initial control polygon pfj =P i eZ,let the values pik’j, k >0 be defined

recursively by non-stationary subdivision scheme (4.1) together with (4.2). Suppose P* be the piecewise
linear interpolation to the values pi'fj and P~ be the limit surface of the subdivision scheme (4.1). If v <1,

then error bounds between limit surface and its control polygon after k-fold subdivision is

k
=), <l e+ 3 L) 620

where 7 = max{nl,nz,m,m}, T= max{rl,rz,rg,q} and & = max{§1,§2,§3,§4}, n,7.,¢5,t=1.4 are
defined in (4.4)-(4.6), ;/to,t =1,2,3, are defined in (4.8) and v is defined in (4.3).
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Proof: From (5.7) we have HPk+1 - PkHw <nyf +oys +EyE . Using (5.9) we get
[Pt =P <(m? + 278 + &5 v )

()"

—] . This completes the proof.
1-y

By triangular inequality HPk - P°°Hw < {77710 +77; + é%)}(

Remarks 5.2. Theorem 5.7 is a generalization of the corresponding Theorem 7 (after correction) of
Mustafa et al. In particular, if the subdivision mask does't change by increasing subdivision level k then
both results coincides.

By using Theorem 5.7 we can obtain the following computational formula of subdivision depth for non-
stationary binary subdivision surfaces.

Theorem 5.8. Let k be subdivision depth and let d* be the error bound between non-stationary binary
nys + vy + &7 j
é(l-y)

subdivision surface and its k -level control mesh P¥. For arbitrary £ >0, if k > Iogy/l(

then d* <.

k
Proof: From (5.20), we have d* :HPk -~ P°°H < {777/10 + 778 +§y§)(1(w—)J , This implies, for
. -y
arbitrary given & > 0, when subdivision depth k satisfy the following inequality

K>log | T8N
=0T )

then d* <&. This completes the proof.
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