
 ISSN 1746-7659, England, UK 

                                                          

Journal of Information and Computing Science
Vol. 2, No. 3, 2007, pp. 191-196

Generating Multivariate Nonnormal Distribution Random 
Numbers Based on Copula Function 

Xiaoping Hu + , Jianmin He  and Hongsheng Ly  

School of Economics and Management, Southeast University, Nanjing 210096 
( Received 30 June 2006, accepted 4 August 4 2006 ) 

Abstract. Random numbers of multivariate nonnormal distribution are strongly requested by the area of 
theoretic research and application in practice. A new algorithm of generating multivariate nonnormal 
distribution random numbers is given based on the Copula function, and theoretic analysis suggests that the 
algorithm is suitable to be feasible. Furthermore, simulation shows that the empirical distribution which is 
formed by random numbers generating from the proposed algorithm can well approach the original 
distribution. 
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1. Introduction  
There are only a few methods of generating random numbers from multivariate nonnormal distribution, 

and such random numbers are strongly requested by the area of multivariate analysis and statistical modeling. 
  Nagahara(2004) stated that the Pearson distribution system could represent wide class of distributions 

with various skewness and kurtosis. The Pearson system included some well-known distributions, for 
example, gamma, beta, t-distribution, etc. Generating random numbers from the Pearson distribution system 
was given in that paper. 

In this paper, a new method of generating multivariate nonnormal distribution random numbers is 
proposed based on the Copula function. Firstly, every marginal distribution is obtained from the multivariate 
distribution. Secondly, the copula function of the multivariate distribution is gained according to the Sklar’s 
theory.  Thirdly, uniform distribution random number vector between 0 and 1 are generated using the 
Bayesian conditional probability formula. lastly, every  component  of  the  uniform distribution random 
number vector  obtained  in  3ith step  is  transformed  by corresponding  to  the quasi-inverses function of 
the  marginal distribution function . Cogent theoretical analysis shows that the proposed generator is suitable 
to be a reliable and efficient multivariate nonnormal distribution random numbers generator which can be 
used widely in multivariate analysis and statistical modeling. 

The outline of the paper is as follows. A brief review of Copula and Notion are introduced in Section 2. 
A algorithm of generating multivariate nonnormal distributions by using the Copula method is shown in 
Section 3.The simulation for a concrete example are applied in Section 4. The conclusion is shown in Section 
5.  

2. A Brief Review of Copulas and Notion 
Nelsen defines copulas as “functions that join or couple multivariate distribution functions to their one-

dimensional marginal distribution functions” (Nelsen, 1999, page 5). Copulas contain all the information 
about the dependence structure of a vector of random variables. They can capture nonlinear dependence 
among random variables, while correlation is only a linear measure of dependence. In particular, copulas 
contain information about the joint behavior of the random variables in the tails of the distribution, which 
should be of primary interest in a study of contagion of financial crises. Moreover, copulas are able to 
capture tail behavior without the need of using discretion to define extreme outcomes.  

We now assume that we are using the increasing function definition of a Copula, and the relationship 
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n n

between the Copula and joint probability distribution function can be described by theorem 1 and 2.  
Theorem 1. (Sklar,1959): Let  be the joint distribution with margins , and let 

 be quasi-inverses
1 2( , ,..., )nF z z z ( )i iF z

1( )i iF U− 1, then there exists a copula function 
1 1 1

1 2 1 1 2 2( , ,..., ) ( ( ), ( ),..., ( ))nC U U U F F U F U F U− − −=                                      (1) 
If the  is continuous, then C  is unique.  iF

If the  is not continuous, there are some technicalities that relate to what are called sub-copulas and 
the range of the corresponding variables. 

iF

If Copula and marginal distribution functions are known, the multivariate joint probability distribution 
function will be solved by theorem 2.  

Theorem 2 (Sklar,1959): Let  be a Copula ,and assume that  are distribution 
functions. Then there exists a joint distribution function  given by 

1 2( , ,..., )nC U U U ( )i iF z

1 2( , ,..., )nF z z z

( ) ( )1 2 1 1 2 2( , ,..., ) ( ( ), ,..., )nF z z z C F z F z F z= n n                                            (2) 
and the are the marginal distribution functions. ( )i iF z

Therefore, if F  is a continuous multivariate distribution function, Sklar’s theorem suggests that it is 
possible to separate the univariate margins from the dependence structure. The dependence structure is 
represented by the copula. This can be seen even more clearly if we assume the ’s are differentiable, and 

 and  are n-times differentiable. Then, deriving both sides to get the density of , we get:  
iF

C F F

 

( ) ( )1 2 1 2 1

1 2 1 2 1

, ,..., , ,...,
...

..., ...,

n n
n n n

n n

F z z z C U U U UU
z z z U U U z z

∂ ∂

n

∂∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                                       (3) 

where , that is, the density of F  has been expressed as the product of the copula 
density and the univariate marginal densities. In this sense, we state that the copula has all the information 
about the dependence structure. Consequently, a copula is in essence a multivariate distribution whose 
marginal distributions are , which is uniform distribution on the interval (0, 1). Copulas allow one to 
model the marginal distributions and the dependence structure of a multivariate random variable separately. 
For more discussions on the theory of copulas and specific examples of copulas, see Nelsen (1998). 

( )( 1,2,..., )i i iU F z i n= =

(0,1)U

3. Algorithm for generating random number  
Now, we give the idea, that is, how the random number vector ( )1, , nx x… is generated by the Cumulated 

Density Function . Firstly, obtain the marginal distribution of a 
variable

1( , , )nF X X… iF

iX from . Secondly, get the Copula function according to the theorem 2, 
and then generate from Copula function random number vector whose marginal 
distribution follows . Finally, inversely transform the marginal distribution of a variable

1( , , )nF X X… 1( , , )nC U U…

1( , , )nC U U… 1( , , )nu u…
(0,1)U iF iX , and 

gain 1( )i i ix F u−= .consequently, we have the random number vector ( 1, , n )x x… from the 

existed . 1( , , )nF X X…
In the above-mentioned analysis, the most significant disposal lies with generating random number 

vector whose the marginal distribution follows from Copula function . The 

following is the algorithm to gain the random number vector 
1( , , )nu u… (0,1)U 1( , , )nC U U…

( )1, , nx x… from the Cumulated Density 

Function . 1( , , )nF X X…

                                                           
1 The quasi-inverses definition of a function ( )f x  is as follow: { }inf | ( )x x f x y= = . 
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Algorithm: 
Step 1. Generate  random number , let (0,1)U 1U 2i =  

Step 2. Generate independent  random number(0,1)U p , then  is given by iU

, 1( | ,..., )i ICCDF i iU F p U U −1=  
where 

1
1 1

, 1 1 0
1 1 1 1

1
1 1

1 1 1 1

( , , , ,1, ,1) 1( | ,..., )
, , ( , , )

( , , , ,1, ,1) 1                                   
, , ( , , )

i
iU i

ICCDF i i
i m i

i
i i

i m i
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U U U f U U

C U U U
U U f U U

−
−

−
− −

−
−

− −

∂
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∂ ∂ ∂
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∫
… … i
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1

1 1
1 1

1 1

( , , ,1, ,1)( , , )
, ,

i
i

m i
i

C U Uf U U
U U

−
−

−
−

∂
=

∂ ∂
… ……
…  

Step 3. Let . if i , go to  step 2; else ,stop. 1i i= + n<=

Theorem 3. The random number vector ( )1 2, ,..., nU U U U=  given by the aforementioned algorithm 

follows the joint probability distribution . 1 2( , ,..., )nC U U U

Proof:  For  , by all appearance, the theory is valid. 1n =

For , variables and 2n = 1U p follow ,  (0,1)U

1 2 1 2
,2

1 1 1

( , ) ( , )1
( )ICCDF

m

C U U C U Up F
U f U U

∂ ∂
= = =

∂ ∂
i

 

So get the conditional density function of : 2U ( )
2

1 2
2 1

1 2

( , )| C U Uf U U
U U

∂
=

∂ ∂
 

The two dimensions joint density function of and is  1U 2U

( )
2 2

1 2 1 2
1 2 2 1 1

1 2 1 2

( , ) ( , )( , ) | ( ) 1C U U C U Uf U U f U U f U
U U U U

∂ ∂
= = =

∂ ∂ ∂ ∂
i

 
Consequently,  follows . 1 2( , )U U 1 2( , )C U U

For , suppose  follows  n k= 1( , , )kU U… 1( , , )kC U U…
For , 1n k= +

       follows and 1( , , )kU U… 1( , , )kC U U… p follows  (0,1)U

1 1
, 1

1 1

( , , , ) 1
, , ( , , )

k
k k
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C U U Up F
U U f U U

+
+

∂
= =

∂ ∂
… i
… … k  

where  

1
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k
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k
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1
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C U U Uf U U U
U U f U U

+
+
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∂
=

∂ ∂
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Consequently, random number vector 1( , , )kU U +… follows 1( , , )kC U U 1+… .According to the principle 

of induction, the theorem is valid. �  
If Copula belongs to the Elliptical Copula family, for example, normal (or t) Copula, multivariate 

random numbers may be generated by other simpler method as well. Random vectors from these copulas can 
be generated by creating random vectors from the multivariate Elliptical distribution, then transforming them 
to uniform marginal using the Elliptical CDF. 

A block diagram of the proposed procedure generating M groups of random number vectors is shown in 
Figure 1. 

i=1 

U(i,j) ~U(0,1) , j=1 

p ~U(0,1) 

U(i,j+1)=FICCDF(p,U1,…,Uj),  j=j+1

j>dim(Copula)

i=i+1 

j>M 

stop

Yes

 

Yes

 

 
procedure block diagram 

4. Simulation 
In this section, we use Clayton Copula given by Nelsen (1998) to check computations as a concrete 

application example. The expression of Clayton Copula is 

{ }

1

( , ) ( 1)
[ 1, ] \ 0

C U V U Vα α α

α

−− −⎧ = + −⎪
⎨

∈ − ∞⎪⎩  
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In this simulation, we endue 2α = , and define a new residua function: 

( , ) ( , ) ( , )empZ U V C U V F U V= −
 

where  is theoretic distribution function, and is empirical distribution function. 
According to theorem (Glivenko-Cantenlli), when the quantity of observed samples is of greatness, the 
empirical distribution function can well approximate the real distribution function.     Now, we set 

the parameters. Simulation numbers are 10000, and the square [0

( , )C U V ( , )empF U V

( , )empF U V
,1] [0,1]× is partitioned to the grids by step 

0.05. The figure 2 is the residual figure. 

 
Figure 2   residual figure 

In figure 2, the mean and maximal residual value is respectively the lesser value: 0.0022, 0.074. It is 
shown that the theoretic distribution function  can be well approached by the empirical distribution 
function . For the scenarios of different parameter value of

( , )C U V
( , )empF U V α and some of other Copulas, we 

achieve the similar result. So, random numbers generated by the proposed algorithm are assuredly sampled 
from the theoretic distribution function . ( , )C U V

If marginal distributions don’t follow , for example, follow gamma distribution, it is necessary to 
inversely transform random numbers generated by the Copula in the Algorithm. Transform form is given by  

(0,1)U

( )i ix inv GammaCDF u=  

5. Conclusion  
In this paper we have proposed a Copula-based algorithm to generate random numbers from multivariate 

nonnormal distribution. The Copula approach allowed us to construct algorithm by two stages. At one stage, 
generate random numbers with marginal distribution  from Copula function corresponding to 
cumulative distribution function. At the other stage, transform the random numbers from the first stage by 
implementing the quasi-inverse function of marginal distribution. Theoretic proof suggests that the proposed 
algorithm is suitable to be reliable. Furthermore, simulation shows that the empirical distribution which is 
formed by random numbers generating from the proposed algorithm can well approach the original 
distribution. In conclusion, the copula-based algorithm is found to perform well in generating random 
numbers from multivariate nonnormal distribution. 

(0,1)U
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