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Abstract: This paper investigates the method for controlling the uncertain Liu chaotic system with known 
parameters k and h via adaptive backstepping control. With the method, parameters identification and control 
can be achieved simultaneously and quickly with only one controller within finite steps based on Lyapunov 
stabilization theorem. Numerical stimulations are provided to show the effectiveness and feasibility of this 
method. 
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1. Introduction 
In recent years, there has been considerable interest in the control and application of chaos in nonlinear 

dynamical systems. For past years, many different techniques have been proposed to control chaos, such as 
OGY method, differential geometric approach, linear state space feedback, adaptive control, fuzzy control 
and backtepping design [1-8]. 

However, for some uncertain systems, many of the aforementioned methods will fail. An important 
problem is how to achieve nonlinear control of uncertain complex dynamics systems. This problem involves 
both the identification of the unknown parameters and the approach of chaos control. In this paper, we 
investigate the method for controlling the uncertain Liu chaotic system with known parameters k and h. 
Since the Liu chaotic system cannot be controlled directly using the backstepping method for its singularity 
problem, we transform it into the so-called general strict-feedback form [7]. Then an adaptive controller is 
presented to identify the unknown parameters and control Liu chaotic system to a bounded point 
simultaneously. Especially, the designed update laws of the unknown parameters can remarkably improve 
the efficiency of the identification of the unknown parameters and quickly control the Liu system to a 
bounded point. Numerical simulations are given for illustration and verification. 

2. System description 
In 1963, Lorenz found the first canonical chaotic attractor [9]. In 1999, Chen found another similar but 

not topological equivalent chaotic attractor [10]. In 2002, Lü and Chen found the critical attractor between 
the Lorenz and Chen attractor [11]. In the same year, Lü et al. unified above three chaotic systems into a 
chaotic system which is called unified chaotic system [12]. In 2004, Liu et al. found a new chaotic system, 
bearing the name of Liu system [13]. 

The nonlinear differential equations that describe the Liu system are  
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where a, b, c, k and h are system parameters. The system (1) have a chaotic attractor, as shown in Fig.1, 
when a=10, b=40, c=2.5, k=1, h=4. 
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Fig.1.Liu chaotic attractor 

3. The general strict-feedback normal form 
Since the Liu chaotic system cannot be controlled directly using the backstepping method for its 

singularity problem, we transform it into the so-called general strict-feedback form. 
We assume that the parameters a, b and c of the system (1) are unknown. The other parameters k and h 

are known constant parameters. Besides, we add one control input u to the third equation. Thus the 
controlled system of system (1) becomes  
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defining  

1 2, , 3x x y x z hx= = = ，                                                             (3) 

then 

1 2 1

2 1 1 1 3
2

3 1 3 1

( ),
,

,

x a x x
x bx k x x

x u cx x

⎧ = −
⎪

= −⎨
⎪ = − +⎩

�
�
�

                                                                  (4) 

where 1 10, uk kh u
h

= ≠ = . 

The so-called general strict-feedback normal form is described by 
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where 1( , , ) , 1, 2, ,T i
i ix x x R i n= ∈ =" " u R ∈  and y R∈  are the states, input and output respectively; 

 and 1 2( , )T
nb b b b R= ∈" n n

1 2( , )T
n Rθ θ θ θ= " ∈  are the vectors of the unknown constant parameters of 

interest; ( ), ( ), ( ), 1, 2,i i i i i ig x F x f x i n= "  are known smooth nonlinear functions. 

Compared with the general strict-feedback normal form (5), for the controlled Liu system (4), we have  
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since the system parameters a, b and c are unknown, the parameters θ  and b are also unknown. 
The backsteping design procedure cannot be directly applied to the general strict-feedback form (5) 

when there are some ( ) 0, 1,2,i ig x i n= = "  [7]. For system (4), we have , which can take 
the value of zero when 

2 1 2 1( , )g x x x=

1 0x = . In this paper, the adaptive backstepping design procedure can overcome the 
singularity problem caused by 2 1 2 1( , ) 0g x x x= = . We also design an adaptive feedback controller for 
system (4), which can control the Liu system to a bounded point. 

4. Adaptive backstepping control 
The backstepping design procedure take 1ix +  in each subsystem of system (5) as a virtual controlled 

variable [14]. Then the stabilization of the state xi can be achieved asymptotically via an appropriate virtual 
feedback 1 , 1, 2, ,i i 1x i nα+ = = −" . Generally, the solution of the system (5) does not satisfy 1i ix α+ = . 
However, the stabilization of the system can be achieved asymptotically by the control of error variables 
which describe the asymptotic characteristic between 1ix +  and iα . For system (4), there are three steps in the 
backstepping design procedure. At step i, the intermediate control function iα  should be developed using an 
appropriate Lyapunov function Vi. 

Defining three error variables  
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where 1α  and 2α  are functions to be defined. 

Step 1: The derivative of  is express as  1z

1 1 2 1 2 1( )z x a x x az az a 1α= = − = − +�� .                                                  (8) 

Using 1α  as a control to stabilize the -subsystem defined by Eq.(8), we choose the following 
Lyapunov function: 

1z

2
1

1
2

V z= 1

1

.                                                                         (9) 

Calculating the derivative of  along system (4), we have  1V
2

1 1 1 1 2 1 1 1 2 1 1 1( )V z z z az az a az z a z azα α= = − + = + −� � .                              (10) 

Here we suppose that a is positive. We can choose  

1 0 1 0c x c zα = = ,                                                                   (11) 

where 0< <1. Letting 0c 1 0(1 ) 0c a c= − > , we have  
2

1 1 2 1V az z c z= −�
1

1

.                                                                  (12) 

We will cancel the first term in the next step. According Eq.(11), the Eq.(8) can be written in the form  

1 2 0 1 2 1(1 )z az a c z az c z= − − = −� .                                                    (13) 

Step 2: In this step, we deal with the singularity problem caused by the term  in the second 
equation of system (4).  

1 1 3k x x−

Defining a , b and c  are the estimates of a, b and c, and introduce the parameters errors  
ˆˆ , ,a a a b b b c c c= − = − = −ˆ .                                                         (14) 

Then the derivative of  is  2z
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2 2 1 1 1 1 3 0 1 1 1 3 1 2 1 0 2 ( )z x bx k x x c z k z z k z ac z b b zα α= − = − − = − − − − −��� � 1  

0 0 1 1 0 0(1 )( ) (1 )c c a a z bz ac c− − − + + − 1z .                                              (15) 

We obtain the -subsystem: 1 2( , )z z
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Using 2α  as a control to stabilize the -subsystem (16), we choose the following Lyapunov 
function candidate: 

1 2( , )z z

2 2
2 1 2

1 1 1( ) (
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V V z a a b b= + + − + − 2) .                                               (17) 

Its time derivative is given by 
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where  and . 0m > 0n >
According to Eq.(11) and Eq.(15), the Eq.(18) can be written as 

2 2 2
2 1 1 2 1 0 0 1 2 0 2 1 1 2{ [ (1 ) ] } ( ) ( )V c z z z b ac c k ac z m a a n b b k z zα= − + + − − − − − − − −�

3z           (20) 
The possibility of  makes 1 1 0z x= = 2α  incapable of canceling the term  in Eq.(20). However, we 

can choose an appropriate  such that . Since a is positive, it is sufficient to choose . 
0 2ac z

0c 0 0ac− < 00 1c< <

Letting , then we have 2c ac= 0

2 0 0c ac= > .                                                                      (21) 

According to , we choose 1 0k kh= ≠

2 0
1

1 [ (1b ac c
k

α = + − 0 )] .                                                           (22) 

Then we have 
2 2 2 2

2 1 1 2 2 1 1 2( ) ( )V c z c z m a a n b b k z z= − − − − − − −�
3z .                                   (23) 

We will cancel the fifth term  in the next step. By using Eq.(21) and Eq.(22), the Eq.(15) can be 
written in the form 

1 1 2 3k z z z

2 1 1 3 2 2 1 0 0( ) (1 )( )z k z z c z b b z c c a a= − − − − − − −� 1z .                                     (24) 

Step 3: The derivative of  is  3z
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Then we get the following system in the -coordinates: 1 2 3( , , )z z z
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We will choose an appropriate input u to stabilize the system (26) in the following.  
Considering the following Lyapunov function  

_
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we can get the derivative of  3V
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We choose the following update law 
2
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where . 0r >
Let  

2 2
1 3 3 1 1 2 3 2 1u c z k z z cz c z a

a b
2 bα αα ∂ ∂

= − + + + − + +
∂ ∂

�� ,                                  (30) 

where . So we have 3 0c >
2 2 2 2 2
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i.e.  is negative definite. 3V�

According to Eq.(30), the Eq.(25) can be written in the form 

3 3 3 1 1 2 ( )z c z k z z c c= − + + −� 3z .                                                        (32) 

According to Eq.(14), Eq.(19), Eq.(20), Eq.(29) and Eq.(32), we get the following 1 2 3
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system: 

1 2 0 1

2 1 1 3 2 2 1 0 0

3 3 3 1 1 2 3

0 0 1 2

1 2

2
3

(1 ) ,
ˆ ˆ(1 ) ,
ˆ ,

ˆ ˆ(1 ) ,

ˆ ˆ,

ˆ ˆ.

z az a c z

z k z z c z bz c c az
z c z k z z cz

a c c z z ma

b z z nb

c z rc

= − −⎧
⎪

= − − − − −⎪
⎪ = − + +⎪
⎨ = − −⎪
⎪ = −⎪
⎪ = − −⎩

�

�
�
�

�

�

1

c x c z z x

                                               (33) 

Since  is negative definite, we prove that system (33) is globally asymptotically stabilized at the origin 
point. In view of z x

3V�

1 1 1 0 1 0 1 2 2 1, , ,α α= = = = − 1x x=  and 2y x= , we know that the states x  and 

y  go to zero asymptotically. From 
1

1
2 0 0 )][ (1k b ac cα = + − 3 3z x, 2α= − 3z hx =  and , we 

have 
1 0≠k kh=

1
0 0[ (1kz b ac c→ + − )] , as , i.e.  is bounded. At the same time, from Eq.(30) and t →+∞ z 1

u
hu = , we 

can conclude that the control u is also bounded. 
This adaptive backstepping controlling method presents a systematic procedure for selecting a proper 

controller in chaotic control. It needs only one controller, so it is easy to implement. With the controller and 
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updating laws designed above, the control and the parameters identification of the system (2) can be 
achieved asymptotically. 

5. Numerical simulations 
Numerical simulations show the effectiveness of the above methods. We assume that 

, initial conditions [ , , , , ] [10, 40, 2.5,1, 4]a b c h k = 0 0 0[ , , ] [5,6,11.3]x y z = , , 0 0.2c = 3 10c = , 

[ , , ] [20,20,20]a b c = , [ . , , ] [100,100,100]m n r =

        

Fig.2. System states: x(̶), y(‒.), z(…). 
Fig.3. System parameters identification: ( ), ( .), ( )a b c− − " . 

           

Fig. 4: Control action u. 

Fig. 5: Three-dimensional view of the controlled Liu system. 

Figure 2 shows that the states x and y of the controlled Liu system (4) are asymptotically regulated to 
 and , and the state  remind bounded. 0x = 0y = z

Figure 3 displays the system parameters identification results. 
Figure 4 is the controller u. As can be seen from the figure, u is also bounded as . t →+∞
Figure 5 shows that the Liu chaotic system is controlled to a bounded point. 

6. Conclusion 
This paper has developed a new and effective control law to control the uncertain Liu system with 

known parameters k and h. Using the adaptive backstepping design, parameters identification and control can 
be achieved simultaneously with only one controller within finite steps. Especially, the designed update laws 
of the unknown parameters can remarkably improve the efficiency of the identification of the unknown 
parameters by choosing appropriate parameters m, n and r. Numerical simulations show the effectiveness 
and feasibility of the developed design method. 
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